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1. Introduction

I want to look at modifying the Morel and Bolding [1] algorithm in two ways. One is to remove the need to
represent the intensity in a deterministic form and for a deterministic representation of a transport operator.
The second is to look at representing the moments of the source with a simpler form that doesn’t require as
many terms.

Morel and Bolding also didn’t include scattering in their stuff. IMC has a lot of scattering occurring
because of the effective scatters. I think that scattering can be added to the method, but I think that will
require more than a summer’s worth of work. So we’ll just ignore scattering, and just look at problems
with a huge cv so that there is no effective scattering.

2. Brief ECMC description

Let’s say we want to solve
T (I) = S , (1)

where T is a linear Monte Carlo operator, I is the unknown, and S is the source. If we could solve Eq.(1)
exactly, we’d be done. But let’s say we can only approximately solve Eq.(1) with an approximate source S0
for an estimate of the answer, I0. Then we can improve I0 by solving for a correction I1. We want to solve

T (I0 + I1) = S , (2)

and we can use the linearity of T to get an equation for the correction I1:

T (I1) = S − T (I0) = S − S0 . (3)

If we don’t think I0 + I1 is accurate enough, we can keep iterating until the source S − S0 is small (in
some sense).

We can apply this to a Monte Carlo solution of Eq.(1). In that case, the source S is approximated by a sum
of delta functions, because we are sampling discrete particle positions. So we get our approximate solution
I0 by solving

TMC(I0) = SMC = Σpspδ(x− xP ) , (4)

and then the equation for the correction I1 looks like this:

TMC(I1) = S − T (I0) = S − SMC = S − Σspδ(x− xP ) . (5)

In solving this equation for the correction, we need to sample Monte Carlo particles from the source term
S − T (I0). However, we can’t do that by sampling from S − SMC = S − Σspδ(x− xP ). This source
term has a physical interpretation, but it’s not a useful one. The negative delta functions mean “send out
negative particles to cancel out the Monte Carlo solution”, and S means “Get the answer from the original
analytic source like you should have done in the first place”. But we can’t get the analytic answer from S,
or we would have done it already.
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ECMC solves the problem of sampling from the source S − T (I0) by replacing the operator T in the
source term with a deterministic approximation, which is applied to some smoothed version of the Monte
Carlo solution of I0:

TMC(I1) = S − TD({I0}) . (6)

Here {} represents some smoothing operator, like representing I0 with some kind of low-order basis
functions. The source in Eq.(6), S − TD({I0}) is a continuous function in each zone (or at least it doesn’t
have delta functions in it), and it can be used as a PDF that we can sample particle positions from.
However, it might be negative for some values of x, so we will end up with negative weight particles.

In ECMC, we keep iterating on Eq.(6) until the source S − TD(Ii) is “small”. The exact source S is
usually a smooth, slowly varying function in each zone; for example, with thermal emission, it’s linear in
space and evenly distributed over the time step. That means that we can probably make at least a few
moments of the source small. That is, we can probably make S − TD({I0 + Ii + ...}) small.

There are two things that I want to modify in ECMC. The first is getting rid of the deterministic
approximation, and the second is getting rid of the need for multiple transport solves. (Really there are
three that I want to modify - I want to get rid of the negative particles, but that’s a lot harder and I don’t
know how to do it.)

The way we can get rid of the deterministic solution is to apply the Monte Carlo version of the operator
TMC to the Monte Carlo solution in Eq.(5). The math for this is in section 3, but the result can be seen in
Eq.(5) already. If we have solved TMC = SMC exactly, with no additional statistical noise, then the source
term for I1, which represented by a set of new Monte Carlo particles, is S − SMC = S − Σspδ(x− xP ).
That is, the source for the correction is calculated from the particles we used to represent the source - we
don’t have to tally them into some deterministic ID, and then apply a deterministic transport operator TD to
it. We do have to smooth it, however, since we don’t want to interpret the delta functions as negative weight
particles that cancel out our earlier Monte Carlo solution. So the source term we will really use is
S − {SMC} = S − {Σspδ(x− xP )}.

This is also the way we can get rid of the multiple transport solves. Since all of the Monte Carlo particles
are advanced independently, we don’t need to wait until one set is done to create the next set. We sample
the source S like we always do, and get a bunch of particles. Before we run them, calculate
S − {Σspδ(x− xP )}. This means we are going to smooth the delta function source that was represented
by the particles, by representing it with some low order basis functions, and subtract that from the physical
source. That gives us a new PDF, and we sample more particles from it, and we keep going until
S − {Σspδ(x− xP )} is small enough. Then we transport all of the particles - there is no need to run them
in batches.

So we are going to solve

TMC(I) = S − {Σspδ(x− xP )} − {Σsqδ(x− xq)} − ... (7)

where the first Np particles are drawn from a PDF calculated from the source S, the next Nq are drawn
from a PDF calculated from the source S−{Σspδ(x−xP )}, etc, until we think the source is small enough.

This becomes more complicated when we do some statistical operation on the particles while we are
advancing them. In that case, it isn’t true that TMC = SMC exactly, so the second equality in Eq.(5)
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doesn’t hold exactly. This happens when we do scattering, for example, where we sample a new random
direction for the particle after it is born. In that case, we have to iterate. We would end up running the
particles and tallying a source term based on the difference between the PDF for scattering angle and the
directions we actually sampled for the scattered particles. But we’re going to ignore that situation for now.

So the project involves generating source particles, calculating S−{Σspδ(x−xP )}, sampling more source
particles, recalculating S − Σspδ(x− xP ), etc, until they are done. Then we run them to the end of the
time step, and see how noisy the solution is. The question is how big a reduction in statistical noise we see.

An example for what I mean by {} is the standard linear finite element basis functions B0 ≡ x and
B1 ≡ 1− x. Let’s look at an infinite medium problem first. Then the only coodinate that matters for the
particles is time. Say we are sampling the source in time in [0,1]. This means we are picking emission
times for particles with equal probability in [0,1]. Then we sample a bunch of particles, and then calculate
the finite element representation of the source Σspδ(t− tP ):

{Σspδ(t− tP )} = coB0(t) + c1B1(t) (8)

where the coeficients co and c1 come from doing the standard finite element thing to the function
f(t) ≡ Σspδ(t− tP ).

When we go to a 1D problem, we have a 3D representation of the source, because we care about t, x, and
µ. That means we would have 23 = 8 coefficients for a first order representation, and (N + 1)3 coefficients
for order N :

f(t, x, µ) = ΣiΣjΣkcijkBi(t)Bj(x)Bk(µ) (9)

One additional thing I want to look at is whether we can use a reduced basis set for the representation. For
example, can we use a separable set of functions. That means replacing Eq.(9) with products of t, x, and µ
separately, rather than every possible cross term:

f(t, x, µ) = [ΣiτiBi(t)][ΣjχjBj(x)][ΣkθkBk(µ)] (10)

This would reduce the number of coefficients to 3N for order N . (See section 4 for details.)

A lot of code is already written. I have written code that will let us use the Bernstein polynomials of order
1 and 2 as basis functions for the smooth representation of the source. I stuck it into the thermal photon
source, and I created particles, calculated the moments, and created more particles until the source was
small. I did this for both the standard finite element representation and the separable one. The separable
one seems to work, but the standard one doesn’t seem to drive the moments to a small value. I’m sure it’s a
bug, so investigating this and fixing it would be your first task.

3. MC representation of T , I and the source SMC

To eliminate the need for the deterministic I and deterministic transport operator, we apply the Monte
Carlo version of the transport operator to the Monte Carlo representation of I . We’re going to ignore
scattering and frequency dependence for now. The point of this section is to justify using as a source the
term S − {SMC} = S − {Σspδ(x− xP )} for the transport equation, as I did in Eq.(7).

The transport equation for thermal radiation is given in [2] Eq. 2.17, p. 13 as

1

c

∂I(x, t,Ω)

∂t
+ Ω · ∇I(x, t,Ω) = cσa(T )aT 4 − σa(T )I(x, t,Ω) , (11)
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where I(x, t,Ω) is the radiation intensity, with units of energy/(time length2 frequency solid angle), c is
the speed of light, T is the material temperature, σa(T ) is the macroscopic absorption opacity in inverse
length units and a = 8π5k4

15c3h3
is the radiation constant.

Eq.(11) comes with initial conditions Iic(x, t,Ω) defined for all points in the region of interest, and
boundary conditions Ibc(x, t,Ω) defined on the boundary of the region of interest for values of Ω that
ensure that Ibc describes incoming photons.

Eq. (11) is often solved by Monte Carlo methods. These methods advance solutions of Eq. (11) over a time
interval [tn, tn + ∆t] that is small enough that we can regard σa as fixed at its tn values.

For notational convenience, we are going to define transport operator T (I):

T (I) ≡ 1

c

∂I

∂t
+ Ω · ∇I + σa(T )I . (12)

Note that T is linear in I . Eq.(12) allows us to write Eq. (11) as

T (I) = cσaaT
4 . (13)

Monte Carlo representation of I is as a collection of particles. Particle p moves along one or more segments
with speed c with a fixed direction and frequency. We will assume that the opacity σa is constant along
each path, with value σa,s. The segments cover a time [ts0, ts1]. The energy of particle p on segment s, ep,s,
decreases along each segment at a rate proportional to the absorption opacity and the energy. That is, ep
satisfies

dep,s
dt

= −σa ep,s , (14)

yielding
ep,s(t− ts0) = ep,s(ts0) exp[−σa,s(t− ts0)] . (15)

The direction could change between segments because of scattering events, but we are ignoring that for
now.

The intensity IMC represented by the collection of particles in the simulation is a sum over all paths of all
particles. We have

IMC ≡ ΣpΣsIp,s (16)

where

Ip,s ≡ cep(ts0) exp[−cσa,s(t− ts0)]δ3(x−xs0− cΩ(t− ts0))δ(Ω−Ωp,s)[H(t− ts0)−H(t− ts1)]. (17)

Here, δ(x) is the Dirac delta function, and H is the Heaviside step function. H(x) = 0 for x < 0 and
H(x) = 1 for x > 0. In addition, H satisfies dH(x−x0)

dx = δ(x− x0). δ3(x− xs0 − cΩ(t− ts0)) is
shorthand for δ(x− xs0 − cΩx(t− ts0))δ(y − ys0 − cΩy(t− ts0))δ(z − zs0 − cΩz(t− ts0)). The term in
H enforces the fact that the contribution on the segment s is non-zero only for times in the range [ts0, ts1].
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The statistical and algorithmic choices in the implementation of the algorithm show up as choices for the
values of particle properties like ep(ts0), Ωp,s, xs0, etc, and in the choices of the begining and ending path
lengths.

Now we want to apply T to IMC given by Eq.(16) to get the statistical source. This yields

1

c

∂Ip,s
∂t

+ Ω · ∇Ip,s + σaIp,s = ep,s(ts0) exp[−cσa,s(t− ts0)]δ3(x− xs0 − cΩ(t− ts0)δ(Ω− Ωp,s)[δ(ts0)− δ(ts1)]

= ep,s(ts0)δ
3(x− xs0)δ(Ω− Ωp,s)δ(ts0)− ep,s(ts1)δ3(x− xs1)δ(Ω− Ωp,s)δ(ts1)] , (18)

where ep,s(ts1) ≡ ep,s(ts0) exp[−cσa,s(ts1 − ts0)]. The last equality in Eq.(18) holds by virtue of the
properties of the δ function - δ3(x− xs0 − cΩ(t− ts0)δ(ts0) = δ3(x− xs0)δ(ts0).

We see that T (Ip,s) is the sum of δ functions representing the emission of particles at the begining of paths,
minus the destruction of particles at the end of paths. So then

T (IMC) = ΣpΣsT (Ip,s)

= ΣpΣsep,s(ts0)δ
3(x− xs0)δ(Ω− Ωp,s)δ(ts0)

−ΣpΣsep,s(ts1)δ
3(x− xs1)δ(Ω− Ωp,s)δ(ts1) (19)

The sum of the start of the paths is just the source term I said we needed in Eq.(7). The term for the end of
the paths would come into play if we were killing particles by Russian roullette, or we were doing
scattering. Scattering would be like killing a particle with one value of Ω and creating one with a new
value. This is what I meant earlier when I stated that we would have to iterate if we were doing scattering
or other statistical changes in particles after they were created. Those changes would show up as a source
from particle creation and destruction in Eq.(19).

For now, we are going to ignore scattering and Russian roullette. Then we only have to worry about the
source for particle creation. That means that Eq.(7) becomes

TMC(I) = cσaaT
4(x)

− Σpep(t0)δ3(x− xp)δ(Ω− Ωp)δ(tp)

− Σqeq(t0)δ3(x− xq)δ(Ω− Ωq)δ(tq)

... (20)

with TMC being a Monte Carlo transport solution, and the first Np particles are drawn from a PDF
calculated from the source cσaaT 4(x), the next Nq are drawn from a PDF calculated from the source
cσaaT

4(x)− {Σepδ3(x− xp)δ(Ω− Ωp)δ(tp)}, etc.

4. Separable basis functions

Look at the case with only one space dimension and time. Approximate the function f(x, t) as a product of
a constant and the product of two functions X(x) and T (t):

f(x, t) ≈ KX(x)T (t), (21)

with X(x) satisfying ∫ 1

0
dx X = 1 (22)
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and T (t) satisfying ∫ 1

0
dt T = 1 . (23)

The constant K is defined be requiring that∫ 1

0
dx

∫ 1

0
dt f(x, t) = K , (24)

which holds if Eqs.(22) and (23) hold.

Now we show how to construct functions X(x) and T (t) which satisfy Eqs.(22) and (23). Assuming for
the moment that Eq.(22) holds, we define T (t) via

T (t) ≡
∫ 1
0 dx f(x, t)

K
. (25)

We expand T (t) in a set of basis functions Bi(t):

T (t) = ΣiτiBi(t) . (26)

Substituting Eq.(26) into Eq.(25), multiplying by Bj(t), and integrating over time, we get the following
linear system

Σiτi

∫ 1

0
dt Bi(t)Bj(t) =

∫ 1
0 dt

∫ 1
0 dx f(x, t)Bj(t)

K
, (27)

which defines the τi. Similarly,
X(x) = ΣiχiBi(x) (28)

with the χi satisfy

Σiχi

∫ 1

0
dx Bi(x)Bj(x) =

∫ 1
0 dx

∫ 1
0 dt f(x, t)Bj(x)

K
. (29)

It remains to show that X(x) and T (t) defined via Eqs.(28) and (26) satisfy Eqs.(22) and (23). We will
show that, if the Bi(t) are a partition of unity, then Eqs.(22) and (23) hold. Being a partition of unity means
that the Bi satisfy

ΣiBi(t) = 1 . (30)

With T (t) defined by Eq.(26), K defined by Eq.(24), and τi defined by Eq.(27), we have∫ 1

0
dt T (t) =

∫ 1

0
dt ΣiτiBi(t)

= Σi

∫ 1

0
dt Bi(t)

= Σiτi

∫ 1

0
dtBi(t)ΣjBj(t)

= ΣjΣiτi

∫ 1

0
dt Bi(t)Bj(t)

= Σj

∫ 1

0
dt

∫ 1
0 dx f(x, t)Bj(t)

K

=

∫ 1
0 dt

∫ 1
0 dx f(x, t)ΣjBj(t)

K

=

∫ 1
0 dt

∫ 1
0 dx f(x, t)

K
= 1. (31)
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A similar computation shows that Eq.(22) is satisfied by X(x) when that function is defined by Eq.(28).

If we have
f(x, t) = Σpepδ(x− xp)δ(t− tp) , (32)

then ∫ 1

0
dt f(x, t) = Σp∈P (t)epδ(x− xp)δ(t− tp) , (33)

where P (t) is the set of all particles with tp ∈ [0, 1]. K satisfies

K = Σp∈[P (t)∪P (x)]ep , (34)

the τi satisfy

Σiτi

∫ 1

0
dt Bi(t)Bj(t) =

Σp∈[P (t)∪P (x)]epBj(tp)

K
, (35)

and the χi satisfying

Σiχi

∫ 1

0
dx Bi(x)Bj(x) =

Σp∈[P (t)∪P (x)]epBj(xp)

K
, (36)
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