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Abstract: The mechanical response of micro-twinned polycrystalline magnesium was studied 

through three-dimensional discrete dislocation dynamics (DDD). A systematic interaction model 

between dislocations and (1012) tension twin boundaries (TBs) was proposed and introduced 

into the DDD framework. In addition, a nominal grain boundary (GB) model agreeing with 

experimental results was also introduced to mimic the GB’s barrier effect. The current simulation 

results show that TBs act as a strong obstacle to gliding dislocations, which contributes 

significantly to the hardening behavior of magnesium. On the other hand, the deformation 

accommodated by twinning plays a softening role. Therefore, the concave shape of the Mg 

stress-strain curve results from the competition between dislocation-TB induced hardening and 

twinning deformation induced softening. At low strain levels, twinning deformation induced 

softening dominates and a decreasing hardening rate is observed in Stage-I. In Stage-II, both the 

hardening and softening effects decline, but twinning deformation induced softening declines 

faster, which leads to an increasing hardening rate. 
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1. Introduction 

With increasing demand to reduce carbon dioxide emission, many efforts are 

directed towards reducing the structural weight of fossil fuel powered vehicles in 

order to increase their fuel efficiency. As the lightest structural metal (one-third 

lighter than aluminum), magnesium (Mg) and its alloys has been attracting a lot of 

attentions in recent years for their potential utilizations in automotive, aerospace and 

defense applications [1]. However, at present, the wide utilization of Mg alloys as a 

structural material is still challenging due to their poor room temperature formability. 

Owing to its hexagonal closed packed (HCP) structure and low crystal symmetry, Mg 

cannot maintain sufficient independent slip modes to accommodate arbitrary 

deformation in polycrystalline materials at room temperature. Consequently, in 

addition to dislocation-mediated plasticity, twinning plays an important role in its 

plastic deformation. Therefore, it is vital to grasp a full understanding of the 

combined effects of dislocations, twinning, and their mutual interactions to address 

their roles in the overall mechanical behavior of HCP materials [2].  

Due to the presence of deformation twinning, the overall mechanical response of 

Mg displays characteristics different than those commonly observed in face centered 

cubic (FCC) and body centered cubic (BCC) crystals. One common characteristic is 

that the true stress-strain curve of Mg displays a concave shape for both single 

crystals [3, 4] and polycrystals [4, 5], which is attributed to deformation twinning (i.e. 

tension twins). In addition, the stress-strain curve can be characterized by three 

distinct stages. In Stage-I a decreasing hardening rate is observed, followed by 

Stage-II with an increasing hardening rate, and finally a decreasing hardening rate in 

Stage-III [4, 5]. Stage-I is generally associated with twin nucleation and growth 

(mostly twinning-mediated plasticity), which accommodates most of the plastic 

deformation in this stage leading to a decreasing hardening rate [6-8]. On the other 

hand, the progressive decrease in the work hardening rate in Stage-III is a result of 

post-saturation in the twin volume fraction (mostly dislocation-mediated plasticity) [6, 

9]. In Stage-II, both dislocation slip and twinning are active and interact with each 
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other. However, the underlying mechanisms responsible for the increasing hardening 

rate are still debatable. Jiang et al. [6] examined the microstructure evolution during 

AZ31 deformation, and observed that in Stage-II intersections between primary and 

secondary (1012)  twins result in significant grain refinement and increasing 

hardening rate. These results are also in agreement with more recent observations [10]. 

On the contrary, Wang et al. [11] reported that during Stag-II the twin boundary (TB) 

barrier effect weakens as twins coalesce, which undermines the suggested effect of 

grain refinement. In addition, they suggested that the increasing hardening rate can be 

attributed to texture strengthening, since the twin is in a hard orientation with the 

c-axis nearly parallel to the loading axis. Furthermore, the work of Knezevic et al. [7] 

showed that twins consume the entire grains before the end of Stage-II, and all the 

aforementioned twinning mechanisms cannot explain the peak strain hardening rate at 

the end of Stage-II. Instead, they suggested that the nucleation of compression twins 

in the tension-twinned grains attributes to the peak hardening rate reached at the end 

of Stage-II. Moreover, Barnett et al. [5] observed the formation of low angle 

boundaries arising from the glissile-to-sessile transition of dislocations induced by 

twinning shear [12, 13], which act as a source of strengthening. Finally, de-twinning 

as a result of strong interactions between dislocations and twins was also suggested to 

contribute to the observed increasing strain hardening rate in Stage-II [14]. All these 

results indicate that there is yet no clear consonance on the mechanisms responsible 

for the increasing strain hardening rate in Stage-II. 

In the past two decades, several computational methods have been developed to 

understand the dislocation-related plastic behavior. Therein, discrete dislocation 

dynamics (DDD) is believed to be one of the most efficient methods to capture 

dislocation-mediated plasticity at the micro scale. To date, several two-dimensional 

[15, 16] and three-dimensional [17-20] DDD frameworks were proposed and used 

widely to study crystal size effects [21], grain size effects [22-24] and intermittent 

behavior [25]. In fact, previous DDD simulations mainly focused on the FCC and 

BCC materials, and recently more and more works on HCP materials, especially 

magnesium, are reported, in which the following important items were investigated: 
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dislocation junction formation and strength [26, 27], orientation influence on the grain 

size effects [24], micro/nano-pillar plasticity [28, 29], elastic anisotropy [30] and 

Peierls stress [31]. It can be seen that all previous DDD studies on HCP crystals are 

related to the single crystalline and polycrystalline samples, in which twinning 

deformation was not considered. Nevertheless, twinning plays an important and 

sometimes dominant role in the mechanical behavior of both single crystals and 

polycrystals. As a result, previous DDD simulations without twinning may lead to 

inaccurate predication of the mechanical behavior of HCP materials. This also 

indicates the importance and urgency of introducing dislocation-TB interaction model 

into DDD framework to study the deformation twinning.  

As is aforementioned, the mechanical behavior of magnesium and its alloys is of 

great interest due to their numerous applications in industry. However, the 

mechanisms associated with their hardening response, mainly in Stage-II, are not well 

characterized. In order to address this, we propose a systematic interaction model 

between dislocations and 1012  TBs, and integrate it into the 3D-DDD code, 

ParaDiS [17]. A simple grain boundary (GB) model, which agrees with experimental 

results, is also implemented. Using this complex DDD framework, the mechanical 

behavior of micro-twinned polycrystalline magnesium is investigated. Specifically 

these simulations identify the influences of grain orientation, GBs, TBs and twin 

volume fraction on the overall response of Mg. 

   

2. Computational Method 

In this paper, a cubical simulation cell with periodic boundary conditions (PBCs) 

imposed along all three directions is employed, as shown in Fig. 1. All six surfaces of 

the cell are considered as representative GBs. A twin lamella having a thickness lt is 

introduced at the center of the grain with size lg as shown in Fig. 1. Thus, the twin 

volume fraction is given by ft = lt /lg. In this work, only 1012  tension twins are 

considered, as shown by the orientations of the grain and twin in Fig. 1. This 

simulation cell is actually a representative twinned grain in a bulk twinned 
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polycrystalline sample. 

In metals, especially in Mg, there are at least three general sources of strain 

hardening: dislocations, GBs and TBs. In order to investigate their individual 

contributions, three simplified simulation cells are employed in addition to the 

twinned polycrystals in Fig. 1, namely single crystals (i.e. only dislocations), 

polycrystals (i.e. dislocations + GBs) and twinned crystals (i.e. dislocations + TBs), as 

shown in the insets of Fig. 3. Single crystal is a sample without any GBs and TBs, in 

which only dislocations operate. The 6 surfaces of the polycrystal are set to be GBs, 

in which TBs are still absent. This is a sample of both dislocations and GBs. In the 

twinned crystal, only TBs are presented to study the contribution of both dislocations 

and TBs. It should be noted that these simulation cells are simplified since twinning is 

typically observed in experimental bulk single and polycrystals. Nevertheless, these 

simulations provide new insights into the individual contributions of dislocations, 

GBs and TBs on the hardening behavior of Mg. In addition, the dislocation 

mechanisms and deformation modes for different loading orientations in each sample 

can be comparatively studied. Note the 3 simplified simulation cells (single, poly and 

twinned crystals) are used in Subsection 3.1, and twinned polycrystal is used in 

Subsection 3.2, which is identical to the experimental samples. 

All current simulations were conducted using the 3D-DDD simulation code, 

ParaDis [17]. All the possible dislocations and slip planes of HCP crystals, which are 

listed in Table 1, were accounted for in these simulations. It should be noted that 

according to the HCP lattice structure both 〈a〉 dislocations and 𝒃! twinning 

dislocations on (1012)  twinning planes are possible slip systems. Thus, these 

dislocations are also accounted for in the current simulations. The experimentally 

measured Peierls stresses for dislocations on the basal (0.52 MPa [32]), prismatic 

(39.2 MPa [33]), and pyramidal planes (105 MPa [34]) were introduced into the code. 

These values are also in good agreement with recent molecular dynamics (MD) 

predictions [35-37]. Basic Mg parameters used in the current simulations include: 

shear modulus, 𝐺 = 17 GPa; Poission ratio, 𝜈 = 0.29; magnitude of <a> dislocation 

Burgers vector, b = 0.325 nm; axial ratio, c/a = 1.6236; and mass density, 𝜌 = 1738 
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kg/m3. 

Most DDD simulations typically adopted a linear dislocation mobility law. 

However, recent MD simulations of the dislocation mobility in magnesium [36] 

suggest that at low stress levels the dislocation velocity increases linearly with the 

applied stress. At higher stresses the velocity also increases linearly but with a much 

smaller slope. Thus, in the current simulations a bi-linear law for the dislocation 

mobility that is fitted to these MD results is employed. The drag coefficients and 

transition velocities for the stress-velocity curve are listed in Table A1, in appendix A. 

To avoid any divergence in the iterative algorithm, a spline curve was used near the 

transition velocity to smoothen the bi-linear curve. The upper limit to the dislocation 

velocity was set as the shear wave velocity, 𝐺/𝜌 . Furthermore, as a first 

approximation, the dislocation mobility and Peierls stress on the twinning plane were 

set to equal those for pyramidal plane, since their precise values have not been 

reported in literature yet. 

Uniaxial strain-controlled loading (compressive or tensile) with a constant strain 

rate of 𝜀 = 5000/s  was imposed in the current simulations. Due to the configuration 

symmetry along the 𝑥 and 𝑧 axes with respect to the twin lamella, the loading axis 

is limited within the 𝑦𝑧 plane. As a result, four representative loading directions 

denoted by 𝑦, 𝑧, 𝑦𝑧, and 𝑦𝑧, are considered. Loadings along the y and z directions 

are realized by imposing a strain rate 𝜀! =    𝜀 and 𝜀! =    𝜀, in the y and z directions, 

respectively. The 𝑦𝑧 loading is a uniaxial loading that is 45º from either the 𝑦 or 𝑧 

axis, and is achieved by imposing a strain rate tensor: 

𝜺 = 𝜀
−𝜈 0 0
0 1− 𝜈 /2 1+ 𝜈 /2
0 1+ 𝜈 /2 1− 𝜈 /2

                 (1) 

Similarly, the 𝑦𝑧 loading is 45º from the 𝑦 axis and 135º from the 𝑧 axis, and is 

achieved by imposing the following strain rate tensor: 

𝜺 = 𝜀
−𝜈 0 0
0 1− 𝜈 /2 − 1+ 𝜈 /2
0 − 1+ 𝜈 /2 1− 𝜈 /2

                 (2) 

Initially, Frank-Read (FR) dislocation sources were randomly distributed within 
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the simulation cell. The initial dislocation source density in all simulations was 

chosen as ρsrc = 5×1012 m-2, and the FR source length was lsrc = 0.26 𝜇m. While 

dislocation slip on various slip planes is possible in HCP crystals as listed in Table 1, 

〈a〉 dislocations on basal, prismatic and pyramidal I planes as well as 〈c+a〉 

dislocations on pyramidal II planes play a predominant role in dislocation mediated 

plasticity in Mg [38, 39]. Therefore, in the current simulations all dislocation sources 

were initially assigned on these specific four slip planes, which also agree with 

previous studies [24, 40, 41]. To account for possible statistical variations due to the 

random distribution of dislocation sources, each simulation was repeated three times 

with different initial distributions. 

2.1 Dislocation-twin boundary interaction model 

Twinning and dislocation-mediated slip both play important roles in the 

deformation of Mg and its alloys. Thus, it is crucial to account for the contribution of 

dislocation interactions with TBs. To accurately model these interactions in DDD we 

first derive a set of physically based rules for these interactions from experimental 

observations and/or MD simulations. Price [42] first studied these interactions in Zinc 

and showed that an <a1> dislocation, which intersects the TB in a screw character, 

can transmit through the TB without any remnants on the TB. On the other hand, <a2> 

and <a3> dislocations in the matrix can only be transmitted mutually through the TB 

by forming a <c> dislocation in the twinned crystal, while leaving two twinning 

dislocations on the TB. Yoo and Wei [43] subsequently developed a set of 

dislocation-TB interaction scenarios for <a> and <c+a> dislocations based on 

geometric considerations of the HCP crystal structure. Electron microscope 

observations have shown good agreement with the Yoo and Wei model [43-46]. 

Furthermore, Yoo [47] performed a detailed analysis and proposed twenty six distinct 

types of interactions between three dislocation families and four most familiar twin 

boundaries in HCP crystals. In addition to these experimental observations, recently, 

MD simulations showed that the dislocation-TB interactions are also dependent on the 

applied loading. Under different applied stress directions, <a1> dislocations on the 

basal plane in the matrix can be transmitted to the basal plane in the twin, the 
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prismatic plane in the twin, or the prismatic plane in the matrix [48, 49]. In addition, 

no residual dislocation is left on the TB, which agrees well with the experimental 

observations. However, <a2> and <a3> dislocations form some steps on TB after 

absorbed [50, 51]. The subsequent motion of these steps along the TB leads to TB 

migration, which supports the twin growth mechanism by twinning dislocations [50].  

Accordingly, in the current study the systematic interaction scenarios of Yoo [47] 

between different dislocations (i.e. 〈a〉 , 〈c〉 and 〈c+a〉) and the (1012) TB were 

introduced into the DDD framework. It should be noted that in Yoo’s model some 

peculiar dislocation reactions were proposed. In particular, 〈c+a〉 and 〈c〉 incident 

dislocations were proposed to be transmitted as 5723 /6 and 1100 , respectively. 

These high lattice index dislocations would not be stable because of their high Peierls 

stresses and core energies, and should dissociate into more common dislocations 

having Burgers vectors with low lattice indexes. Our MD simulations show that a 

1100  dislocation dissociates into two <a> dislocations ( 1100   →    1210 3   +

   2110 3   =    < 𝑎! >   −  < 𝑎! > ). Furthermore, through simple geometric 

calculations it can be shown that 5723 6 can be decomposed into 1.5 <a> and 0.5 

<c+a> dislocations (i.e. 5723 6   →    1210 2   +    2113 6   =   1.5 < 𝑎 >

+  0.5   < 𝑐 + 𝑎 >). Thus, in the current simulations, these transmitted dislocations 

with low lattice index are defined instead. 

In the current simulations, three rules are specified to identify the reaction 

outcome of a dislocation-TB interaction, in terms of twinning dislocations on the TB 

as well as Burgers vectors and slip planes of the transmitted dislocations in the twin. 

In general, the dislocation transmission reaction across a TB can be expressed as 

follows 

 𝒃!   →    𝒃!"!
!!!   +     𝑘𝒃!                         (3) 

where 𝒃! is the incident dislocation in the matrix, 𝒃!" is the jth resulting dislocation 

in the twin, and 𝒃! is the twinning dislocation on the TB. In particular, these rules 

are based on (a) geometric constraints, (b) maximum power dissipation, and (c) 

energy minimization. The geometric constraints guarantee that the number of 
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twinning dislocations is smallest. This geometric rule is used to predict the resulting 

dislocations and twinning dislocations, similar to that proposed by Yoo [47]. 

According to this rule, the general dislocation decomposition is listed in Table A2 in 

Appendix A, in which all the possible incident dislocations from any slip planes, as 

listed in Table 1, are considered. All the resulting dislocations and slip planes have 

low lattice index. The resulting slip planes were chosen to be tilt planes with respect 

to the incident plane. Thus, if a tilt plan does not exist the dislocation is not allowed to 

penetrate (i.e. twisted boundaries are impenetrable). This geometric rule is analogous 

to that proposed for dislocation-GB interaction from previous DDD simulations of 

FCC polycrystals [15, 22, 25]. 

While for most incident dislocations this geometric rule is sufficient to identify 

the transmitted dislocation plane, this is not the case for incident <a1> dislocations, 

which intersect the TB in a screw configuration. Here, six potential tilt planes in the 

twin exist. Serra et.al [48] showed based on MD simulations that depending on the 

characteristics of the applied load a matrix <a1> dislocation on a basal plane can be 

transmitted to the twin basal plane, twin prismatic plane or reflected back into the 

matrix on a prismatic plane. Generally, the slip plane with the largest resolved shear 

stress was usually selected as the resulting slip plane. Since in HCP crystals the 

Peierls stresses and mobility laws are strongly dependent on the slip system under 

confederation, thus, to account for all these factors, the most favorable plane is chosen 

to be the one that would result in the largest power dissipation [17]:  

𝑃   =    𝑭!   𝑽!                           (4) 

where 𝑭! and 𝑽! are the stress and velocity of the jth transmitted dislocation. 

Finally, to account for the barrier strength of the TB, dislocation transmission is 

performed only if the energy associated with the incident dislocation is larger than or 

equal to the energy associated with the transmitted dislocations and twinning 

dislocations. Thus, the critical resolved shear stress 𝜏!  acting on the incident 

dislocation should obey the following energy minimization equation 
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𝜏!𝑏!
!   +   𝛼!𝐺!𝑏!

!   ≥    𝛼!"𝐺!"𝑏!"
!

!

!!!

  +      𝑘𝛼!𝐺!𝑏!
!   +      𝑘𝛾!"𝑏! ,                         5   

where   𝛾!" = 113mJ/m! is the TB energy [52], α and G are the corresponding 

self-energy parameter of dislocations and shear modulus associated with the slip 

planes [53].  

2.2 Dislocation-grain boundary interaction model 

Using the representative grain model with PBCs in all three directions, as shown 

in Fig. 1, the orientation of each grain in the bulk materials is identical, which 

corresponds to a strong basal texture in polycrystalline Mg. However, the 

misorientation between the a-axes in neighboring grains is not accounted for here. 

Nevertheless, in the current simulations, the GB is introduced as an artificial 

interface/barrier to dislocation motion. Dislocations trapped at the GB can be 

transmitted into neighboring grains if the shear stress on the dislocation exceeds the 

GB strength. This approximation was successfully adopted by DDD simulations of 

polycrystalline materials [24, 54]. The GB transmission strength is largely governed 

by the misorientation angle, 𝜃!"# , which can be approximated as 

𝜏!" =   2𝐺𝑠𝑖𝑛!(0.5𝜃!"#) [15, 22, 25]. The effect of the misorientation angle on the 

stress-strain response from our DDD simulations in the absent of twinning is shown in 

Fig. 2. In these simulations the grain size was lg = 0.81 𝜇m, and a compressive 

loading along the y-axis was imposed, which produces a predominant basal slip 

deformation. An experimental stress-strain curve of a 0.8 𝜇m grained Mg alloy under 

a similar loading condition [55] is also shown. It is clear by comparing the DDD 

simulations with this experimental result that a misorientation angle of 𝜃!"# =   15° 

(i.e. GB strength 𝜏!" =     580  MPa) agrees well with this experimental result, and 

thus in all subsequent simulations this misorientation angle is chosen.  

 

3. Results and Discussions 

3.1 Hardening behavior of single crystals, polycrystals and twinned crystals 

In this subsection, three simplified simulation cells are employed to study the 
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individual contributions of dislocations, GBs and TBs on the hardening behavior of 

Mg, which are single crystals, polycrystals and twinned crystals as shown in the insets 

of Fig. 3. All the simulation cells have an edge-length lg = 1.3 µm. Figure 3 also 

shows the stress-strain responses under different loading orientations from the three 

simulation cells. Figure 4 shows the contours of the effective plastic strain at the end 

of those simulations. From these contours the slip traces are clearly identified. It is 

clear that the single crystal responses (black curves in Fig. 3) for loadings along both 

the y and z axes are identical. These two loading directions make angles 46.85° and 

43.15° with respect to the basal plane, respectively, leading to predominant basal slip 

since the Schmid factor is maximum on these planes, as shown in Fig. 4(a). The low 

yield stress for these two loading orientations are mainly governed by the low Peierls 

stress and high dislocation mobility on the basal plane. On the other hand, loadings 

along the yz and 𝑦𝑧 directions lead to higher yield points. The yz direction is almost 

perpendicular to the c-axis, and plasticity is mediated by prismatic 〈a〉 dislocation slip 

(see Fig. 4(b)). Furthermore, the 𝑦𝑧 loading is 1.85° away from the c-axis, which 

leads to predominant 〈c+a〉 slip on pyramidal II planes (see Fig. 4(c)). As expected, 

the yield stress for loading along the 𝑦𝑧 direction is the highest since pyramidal slip 

is the hardest slip mode. It is also clear from Fig. 3 that regardless of the loading 

direction, all results exhibit weak strain hardening response in the absence of GBs or 

TBs up to ~1% strain.  

Figure 3 also shows the predicted stress-strain responses of polycrystals loaded in 

three different orientations (red curves). These simulations show that GBs lead to a 

significant rise in the crystal strength as compared to single crystal simulations. In 

particular, the yield strength increases by 208% for y and z loadings (basal slip), by 70% 

for yz loading (prismatic slip), and by 19% for 𝑦𝑧 loading (pyramidal slip). It is clear 

from the contour maps in Figs. 4(d)-(f) that the deformation modes are similar to 

those in single crystal simulations, but with fewer slip traces due to the GB’s barrier 

effect. In addition, the higher strain hardening rates are observed in all simulations 

with GBs (i.e. 15.5 GPa for basal, 8.2 GPa for prismatic and 5.4 GPa for pyramidal 

slips). Note that these hardening rates are mean values from 3 realizations with 
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different initial dislocation distributions. The orientation dependence of the hardening 

rate is a result of the anisotropy in slip modes and Peierls stresses in Mg. Since the 

basal slip orientation is a single slip orientation (Fig. 4(d)), many dislocations pile up 

at the GBs, which lead to a strong back stress and a high strain hardening rate. For the 

prismatic and pyramidal slip orientations (Figs. 4(e)-(f)), plasticity is mediated by 

multi-slip, resulting in small dislocation pileups and low strain hardening rates. 

Finally, the twinned crystals response is shown by the blue curves in Fig. 3. The 

simulation cell has edge-length lg = 1.3 µm, and the twin lamella of thickness lt = lg/2 

is located at the center of the simulation cell. For these simulations, only two unique 

loading directions exist. The y and z loading directions share the same response and 

deformation modes in the matrix and twinned regions, while yz and 𝑦𝑧 loading 

directions share another one. The hardening rates for the y and yz loading directions 

are 20.4 GPa and 26.6 GPa, respectively, for deformation up to 0.8% strain. These 

rates are significantly higher than those observed from the GB simulations. Fig. 4(g) 

shows the contours of the effective plastic strain at the end of the simulations in a 

twinned simulation cell loaded along the y direction. Dislocation slip is predominant 

on basal planes in both the matrix and twin. Some slip traces are observed to be fully 

blocked in the twin or matrix, which is consistent with the high hardening rate 

observed in Fig. 3. On the other hand, some traces are connected across the TB, 

forming a long zigzag trace from basal planes in the matrix to basal planes in the twin. 

These observations are in excellent agreement with experimental observations [43, 

44]. Furthermore, Fig. 4(h) shows a different deformation response during loading 

along the yz direction. Plasticity here is confined in the matrix since the twin is in a 

much harder orientation (pyramidal slip) as compared to the softer orientation of the 

matrix (prismatic slip). 

As discussed above, there are at least three sources contributing to strain 

hardening in Mg crystals, including dislocation forest hardening, GB strengthening, 

and TB hardening. The single crystal simulations, discussed in Fig. 3, indicate a 

minor contribution from dislocation forest hardening for the given initial dislocation 

density and strain levels reached. On the other hand, GBs and tension TBs clearly act 
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as strong barriers to dislocation glide, leading to a more significant hardening. 

Furthermore, TBs obviously provide the most important contribution to hardening 

response.  

In order to identify the hardening source associated with TBs, the dislocation 

configurations from the twinned crystal simulations in both loading directions are 

shown in Fig. 5. For simulations with loading along the y direction, it is observed that 

many parallel dislocations pile up against the TB as shown in Fig. 5(a) by straight 

dislocations (red in the matrix and green in the twin). In this case, all the piled up 

dislocations in the matrix and twin are only basal <a2> and <a3> dislocations, since 

the Schmid factor of <a1> is 0. According to the dislocation-TB interaction model 

shown in Table A2, these dislocations should decompose as follows 

< 𝑎! > or < 𝑎! >  →   0.5 < 𝑐 + 𝑎 > +  𝒃𝒕               (6) 

Thus, when the first dislocation (incident dislocation bi) arrives at the TB, it 

decomposes into one half <c+a> dislocation (residual dislocation br) and a twinning 

dislocation (bt), as shown in Fig. 5(a1). This decomposition is identical to that 

reported by MD simulations [49-51] and predicted experimentally [43, 44]. While the 

Schmid factor on the TB is zero, the twinning dislocation is observed to glide away on 

the TB, as shown in Fig. 5(a2), due to the repulsive force between the residual 

dislocation and twinning dislocation. This may provide a mechanism for twin growth 

in the crystal [50, 51]. However, the one half <c+a> dislocation is a sessile 

dislocation that will remain on the TB. This residual dislocation will also have a 

repulsive interaction with subsequent incident dislocations, which would contribute to 

the dislocation pileup near the TB (see Fig. 5(a2)). With the increasing applied stress 

and number of pileup dislocations, the shear stress acting on the new leading incident 

dislocation in the pileup increases remarkably, and overcomes the repulsive 

interaction with the residual dislocation on the TB. Thus, the new incident dislocation 

would reach the TB and then decompose into another one half <c+a> dislocation and 

a twinning dislocation. Therefore, an integrated <c+a> can subsequently be emitted 

into the twinned crystal from the TB, as shown in Fig. 5(a3). This is consistent with 

the experimental observations [44, 45]. As further dislocations reach the TB, the same 
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decomposition processes would repeat. Finally, it should be noted that while 

dislocation transmission across TB is observed in the current simulations, it occurs 

only at high local stress levels due to heavy dislocation pileups, as shown in Fig. 5(a4). 

This is the reason for the strong barrier effect of the TB.  

On the other hand, during loading along the yz direction two dense dislocation 

networks are observed on the TBs (see Fig. 5(b)). Figure 5(b1) shows that the network 

consists of two intersecting sets of parallel straight dislocations, in addition to curved 

dislocations. As stated previously, during loading along the yz direction, plasticity is 

accommodated by prismatic slip in the matrix. According to equation (6), the straight 

dislocations are half <c+a> residual dislocations, as an output from incident prismatic 

<a> dislocations. The angle between the intersecting sets is 45.7°, which is the angle 

between the intersection lines of two prismatic planes on the TB. Furthermore, the 

curved dislocations are twinning dislocations, which are glissile on the TB since the 

Schmid factor is nonzero for this orientation. Because few dislocation pileups are 

observed in Fig. 5(b), dislocation transmission events across the TB in this loading 

orientation are rare.  

As shown in Fig 4(g), loading along the y direction is a single slip orientation 

since plasticity is accommodated by basal slip only. Thus, plasticity is confined to 

distinct planes and many dislocation pileups would be expected at the TBs (see Fig. 

5(a)). On the other hand, loading along the yz direction leads to multi-slip deformation 

on prismatic planes. Subsequently, the contour of plastic strain in the matrix is 

uniform, as seen in Fig. 4(h), and few dislocation pileups are expected at the TBs (Fig. 

5(b)). It should be noted that prismatic slip during yz loading induces a higher 

hardening rate than basal slip during y loading, which seems contradictory to the 

previous hardening mechanism of polycrystals. In fact, this is a result of the hard 

orientation (pyramidal slip) of the twin with respect to the yz loading axis, in which 

almost no plastic deformation is seen (Fig. 4(h)). Also note that such hardening 

behavior holds true only at low stress levels, at which twin is hard to plastically 

deform. Section 3.2 will show that such mechanism is invalid for high stresses, since 

the twin would play an important role in the overall plastic behavior. Furthermore, in 
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the yz loading the Schmid factor on the TB plane is high, leading to the glide of many 

twinning dislocations, which would contribute greatly to TB migration and twin 

growth [50, 51]. In other words, compressive loading along the yz direction is a 

favorable orientation for twin growth, in agreement with experiments oriented for 

compressive loading perpendicular to the c-axis [6, 8].  

The three popular hardening mechanisms that are usually attributed to cause the 

twinning-related hardening in magnesium are: (a) Hall-Petch strengthening due to 

grain refinement by the evolving twins [9, 56, 57]; (b) Basinski mechanism: 

glissile-to-sessile transformation of dislocations due to the twinning shear [12, 13]; 

and (c) texture hardening induced by the hard orientation in the twins [11, 13]. The 

current DDD simulation results of the twinned crystals provide direct evidences of 

these mechanisms. In Figs. 5(a) and (b), many sessile residual dislocations remain on 

the TB, which agrees well with the Basinski mechanism. The TBs act as strong 

obstacles to dislocations, and induce grain refinement hardening. In addition, the 

absence of plasticity in the twinned region (see Fig. 4(h)) clearly demonstrates the 

hardening induced by the lattice orientation of the twins.  

3.2 Hardening behavior of twinned polycrystals 

To identify the collective contribution of dislocations, GBs and TBs on the 

hardening behavior of magnesium, in this subsection, the mechanical behavior of 

twinned polycrystals is investigated. This crystal is identical to the experimental 

samples. In the following simulations the grain size is kept constant at lg = 1.3 µμm 

and the twin size, lt, is varied to address the effect of twin volume fraction. Tension 

twinning has been reported experimentally to be facilitated by compression 

perpendicular to the c-axis, or tension parallel to the c-axis [6, 8]. These correspond to 

the current yz compressive loading and y 𝑧  tensile loading, respectively. The 

engineering stress-strain responses for different twin volume fractions (ft = lt/ lg) under 

yz compressive loading are shown in Fig. 6. The case of ft = 0.0 corresponds to an 

untwinned polycrystal, while ft = 1.0 corresponds to a fully twinned polycrystal. It is 

observed that the yield stress increases with increasing twin volume fraction, until it 

reaches a peak value at ft = 0.7. The inset in Fig. 6 shows that dislocation activity in 
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the matrix contributes mostly to the overall plastic deformation. Subsequently an 

increasing twin fraction results in reducing the grain volume, which would in turn 

result in an increase in the yield stress of the crystal. Furthermore, the case of ft = 1.0 

indicates that the yield stress for the twin orientation is about 350 MPa. Thus, once 

the yield stress exceeds 350 MPa when the volume fraction increases beyond ft = 0.5, 

dislocation activity in the twin begins to contribute to the overall plastic deformation. 

For ft > 0.7, the overall plastic deformation is mainly accommodated by dislocation 

activity in the twin, since fewer dislocation sources would exist in the smaller matrix 

region. Therefore, the yield stress decreases with further increase in the twin volume 

fraction. In the fully twinned grain with ft = 1.0, the c-axis is rotated close to the yz 

compressive loading direction, which is an orientation that would promote 

compression twinning. Knezevic et al. [7] observed compression twins and double 

twins in various individual grains, which are always in a thin band shape with low 

fraction and suggested to contribute to the peak hardening rate in stage II. To model 

this, here we introduced a nominal compressive twin with a volume fraction of 0.05 in 

the center of the fully twinned grain, and these TBs are assumed to be impenetrable to 

dislocations. To keep the notation consistent, this case is denoted by ft = 1.05. Fig. 6 

shows that the volume fraction of ft = 1.05 produces the highest yield stress, which 

confirms the important role of compression twins after saturation of tension twinning. 

Figure 7 shows the hardening rate due to dislocation slip, 𝜃!, as a function of 

twin volume fraction. These hardening rates were computed from a linear fit of the 

stress-strain curve beyond a plastic strain of 𝜀! = −0.05%. It is clear that the 

hardening rate increases before ft = 0.3, and then decreases between ft = 0.3~1.0. 

Subsequently, the hardening rate increases again at a volume fraction of ft = 1.05. It 

should be noted that only dislocation-mediated plasticity is modeled in the current 

DDD framework. Under actual experimental conditions, plastic deformation is 

mediated by both dislocations and twinning, with twinning playing a major role 

especially at low strain levels. Thus, the contribution of twinning plasticity must be 

taken into account. Accordingly, the overall hardening rate,  𝜃, can be decomposed 

into a contribution from dislocation slip and a contribution from twinning, such that θ 
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would be given by: 

𝜃 =   
𝑑𝜎
𝑑𝜀 =   

𝑑 𝐸 𝜀 − 𝜀!"#$
! − 𝜀!"#$

!

𝑑𝜀    

=   
!(!(!!!!"#$

! ))

!"
−   ! !!!"#$

!

!"
= 𝜃! −   𝜃!         (7) 

where 𝜃! is the hardening rate induced only by dislocation slip, which is plotted in 

Fig. 7. On the other hand, 𝜃! is the hardening rate induced only by twinning and can 

be computed based on the twin volume fraction [8] such that 

𝜃!   =   
! !!!"#$

!

!"
= 𝐸𝑚𝛾!"#$

!!!
!"

                    (8) 

where 𝑚 and 𝛾!"#$ represent the average Schmid factor of the twin variants and 

characteristic twinning shear, respectively. For the (1012) twinning in Mg and its 

alloys, 𝛾!"#$ = 0.13, and 𝑚 = 0.437 for yz compressive loading and 0.499 for y𝑧 

tensile loading [8]. In order to calculate 𝑑𝑓!/𝑑𝜀, the twin volume fraction reported 

experimentally by 6 different groups [6-8, 10, 58-60] for AZ31 is plotted in Fig. 8 as a 

function of the applied strain. A parabola function of the form 𝑓! =   −42.0𝜀! +

  13.6𝜀 − 0.083 gives the best fit to these experimental data, and subsequently 𝜃! is 

computed by equation (8). It is clear that the twinning-induced 𝜃!  continuously 

decreases with increasing twin volume fraction. The total hardening rate 𝜃 =   𝜃! −

  𝜃! is also shown in Fig. 7. Two stages can be identified: a) decreasing hardening rate 

below a twin volume fraction of 0.1; and b) increasing hardening rate above 0.1. 

These two stages mimic the experimentally identified stages I and II [6-8, 59]. 

Furthermore, for the volume fraction of 𝑓! = 1.05, the highest hardening rate is 

achieved. This indicates that the compression twins in the fully tension-twinned grains 

are responsible for the peak hardening rate in stage II, which agrees well with 

experimental results [7]. Note the total hardening rate is mainly negative, which 

agrees with experiments showing a negative hardening rate for small grain sizes (~3 

𝜇m) at room temperature [5]. Nevertheless, the overall hardening rates are still lower 

than those experimentally measured, which is possibly a result of different initial 

conditions. In experiments, AZ31 polycrystals are usually in an annealed condition 

with a low initial dislocation density [7, 8, 59] and having a high density of second 
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phase particles [28], thus the dislocation-mediated hardening rate 𝜃!, and the overall 

𝜃 is expected to be higher than those from the current DDD simulations.  

The stress-strain responses of y𝑧 tensile loading are plotted in Fig. 9. The yield 

stress displays a different character from that of yz compressive loading. With 

increasing twin volume fraction up to 0.2, the yield stress is observed to increase. For 

a volume fraction between 0.2 and 1.0, the yield stress continuously decreases. This 

can be explained as following. Under y𝑧 tensile loading, the grain c-axis is close to 

the loading direction, which results in a hard deformation mode. Below 𝑓! = 0.2, the 

plastic deformation is mainly mediated by dislocations activity in the grain. Thus, an 

increasing twin volume fraction confines the grain volume and leads to an increasing 

yield stress. With the increasing twin fraction above 0.2, the plastic deformation is 

gradually dominated by the twin, which is in a soft orientation, as shown by the inset 

in Fig. 9. As a result, the yield stress decreases with increasing twin fraction. In fact, 

Figs. 6 and 9 are very similar, only with the inverse twin volume fractions. This 

comes from the exchange of the grain and twin orientations with respect to the two 

loading directions. That is to say, the main deformation mechanisms are identical 

under these two loading paths.  

The dislocation induced hardening rate, 𝜃! , for y𝑧 tensile loading from the 

current DDD simulations is shown in Fig. 10. Similar trends to the yz compressive 

loading are observed. It is observed that 𝜃! increases below 𝑓! = 0.4, and decreases 

beyond 0.4. The experimentally measured variation of twin volume fraction as a 

function of strain for y𝑧 tensile loading is shown in Fig. 8. The twin volume fraction 

increases slowly at low and high strain stages, but quickly at intermediate strains, 

which is different than that for yz compressive loading. This is a result of the different 

activated twin variants [8]. A cubic equation of the form 𝑓! =   −1650.6𝜀! +

303. 4𝜀! − 4.9𝜀 + 0.00817 provides the best fit for the experimental data. As shown 

in Fig. 10, 𝜃! calculated from experiments increases below 𝑓! = 0.4, and decreases 

after 0.4. Although 𝜃! is different from that of yz compressive loading, the overall 

hardening rate 𝜃 displays two distinct stages, which are identical to yz compressive 

loading and experimental observations [8, 59]. Again, the twin volume fraction of 
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𝑓! = 1.05  yields the peak hardening rate in stage II, and agrees well with 

experimental results [7]. 

It is clear that both the yz compressive and y𝑧 tensile loadings show a two-stage 

hardening rate curve, as shown in Figs. 7 and 10, in agreement to experimental 

observations. As aforementioned, three mechanisms are usually attributed to explain 

this hardening behavior in magnesium: (a) Hall-Petch strengthening due to grain 

refinement by the evolving twins [9, 56, 57]; (b) Basinski mechanism: 

glissile-to-sessile transformation of dislocations due to the twinning shear [12, 13]; 

and (c) texture hardening induced by the hard orientation in the twins [11, 13]. In 

addition, the current DDD simulations demonstrated that (d) compression twining in 

fully tension-twinned grains is yet another mechanism [7]. In fact, mechanism (c) 

plays a minor role in the hardening behavior. In Fig. 6 for yz compressive loading, the 

case of ft = 1.0 displays the weakest hardening, indicating the twin orientation with a 

hard deformation mode can increase the yield stress significantly, but contributes less 

to increasing the hardening rate. This is true at least for high stress levels (> 350 MPa) 

or twin fractions (> 0.5), since the twin plastically deforms and its hardening effect 

diminishes. At low stress levels (< 350 MPa) or twin volume fractions less than 0.5, 

the twin hard orientation does contribute to hardening, as shown in Section 3.1, but its 

role in the overall behavior is limited by the low twin volume fraction. Furthermore, 

during 𝑦𝑧 tensile loading a similar hardening curve is still seen in Fig. 10, however, 

tension twining plays a softening role. Thus, regardless of the hardening or softening 

contribution twinning plays, its influence on the resulting hardening behavior is 

minor.  

On the other hand, as observed in Fig. 5, many sessile residual dislocations are 

observed on the TB, which provides direct evidences of mechanism (b) (i.e. the 

Basinski mechanism). Due to the residual dislocations on the TB, subsequent 

dislocations pile up against the TB, resulting in mechanism (a) (i.e. Hall-Petch effect 

due to the grain refinement by twins). In fact, the mechanism (d) also operates 

through the grain refinement in fully tension-twinned grains by compression twins. 

Accordingly, mechanisms (a), (b) and (d) are a similar mechanism, i.e. Hall-Petch 
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effect induced by TB barrier. Therefore, based on the current DDD simulations, the 

hardening behavior due to dislocation slip, 𝜃!, is only a consequence of the TB’s 

barrier effect.  

From this viewpoint, it is possible to develop a unified understanding of the 

observations from both the yz compressive and 𝑦𝑧 tensile loading cases. Since TBs 

act as barriers to gliding dislocations, the best grain refinement with 3 equal-sized 

grains is achieved at ft = 1/3. That is why the hardening rate 𝜃! from current DDD 

simulations reaches its highest value at ft = 0.3 for yz compressive loading and ft = 0.4 

for 𝑦𝑧 tensile loading, as shown in Figs. 7 and 10. The overall hardening rate 𝜃 

depends on 𝜃!  induced by TB barrier effect and 𝜃!  induced by twinning 

deformation (i.e. 𝜃 =   𝜃! −   𝜃!). In Figs. 7 and 10, 𝜃! is always positive, indicating 

that twinning deformation always leads to a softening effect. On the other hand, 𝜃! is 

also positive and TB always produces hardening. As a result, a competition exists 

between dislocation-TB induced hardening and twinning deformation induced 

softening. Below the twin volume fraction of 0.1 for yz compressive loading, or 0.2 

for y𝑧 tensile loading, twinning deformation induced softening dominates, and thus a 

decreasing overall hardening rate is observed in stage I. In stage II, both the hardening 

and softening effects decline, but softening effect declines faster and results in an 

increasing hardening rate. 

 

4. Conclusions 

In this work, a systematic interaction model between dislocations and (1012) 

TBs was proposed. In this model all the possible incident dislocations were taken into 

account, as shown in Table A2. In order to mimic the GB strengthening, a nominal 

GB model agreeing with experimental results was used. Both the TB and GB models 

were introduced into the DDD framework to study the mechanical behavior of a 

representative twinned Mg grain. The TB was shown to be a strong obstacle to 

dislocation glide, and play a dominant role in the hardening behavior. On the other 

hand, previous experimental results show that the plastic deformation induced by 
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twinning acts as a softening role. Therefore, a competition exists between 

dislocation-TB induced hardening and twinning deformation induced softening, 

which is responsible to the concave shape of the stress-strain curve. At low strain 

levels, twinning deformation induced softening dominates, leading to a decreasing 

hardening rate in Stage-I. In Stage-II, both the hardening and softening effects decline, 

but the softening declines faster and leads to an increasing hardening rate.  
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