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Fabry-Perot filter fabrication

Improved ITO laser resistance by imbedding within a Fabry-Perot filter 
Christopher J. Stolz (LLNL, USA) & Anna Sytchkova (ENEA, Italy) 

 Introduction

• A multilayer Fabry-Perot (F-P) filter both simultaneously has high
transmission with low electric field positions within the coating

• Embedding ITO into an electric field minimum reduces the effective
absorption by over an order of magnitude 

• The proper F-P filter spectral bandwidth is a compromise between reduced
effective absorption and higher resonant electric fields 

ITO has a low LIDT due to laser absorption 
of the free carriers

1. C. J. Stolz, M. Caputo, A. J. Griffin, and M. D. Thomas, “1064-nm Fabry-Perot Transmission
Filter Laser Damage Competition” in Laser-Induced Damage in Optical Materials: 2014, G. J.
Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds., Proc. SPIE 9237
92370N-1-6 (2014).

• Fabry-Perot filter was designed at oblique incidence (41°) to enable
angle tuning for this proof of concept

• Spectral bandwidth was 14 nm (“S” pol.) and 36 nm (“P” pol.)

 Model

Standing wave electric field profiles

 Results

Theoretical transmission and absorption

Exploitation of polarization-induced differences reveals the impact 
of absorption on the laser-induced damage threshold  

Single normal incidence ITO layer versus a 41 degree 
incidence F-P filter with embedded ITO 
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F-P filter with embedded ITO at 41° “S” pol.

F-P filter with embedded ITO at 41° “P” pol.
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F-P filter (with ITO) electric field
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F-P filter (non ITO) LIDT vs.
spectral bandwidth  [Ref 1]
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2. A. K. Sytchkova, M.L. Grilli, S. Boycheva and A. Piegari, “Optical, electrical, structural and
microstructural characteristics of r.f. sputtered ITO films developed for art protection
coatings”, Applied Physics A – Matter, A 89 (2007), 63-72.

Conclusions

Laser damage testing reveals the Fabry-Perot 
approach increases the survivability fluence of ITO

• Imbedding an ITO layer within a Fabry-Perot filter
significantly reduces the electric field within the ITO layer

• The Fabry Perot filter design is a compromise between
reduced effective absorption and higher resonant electric
fields

• Laser resistance is improved by imbedding an ITO layer
• Part of the improvement is due to incident angle differences

(scales as the projected angle)
• Coating non-uniformity and defects should be studied in

more depth to better understand laser damage results

The authors would like to recognize Marlon Menor and John Adams from 
LLNL for their assistance with laser damage testing 
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Laser damage probability at 1064 nm (1000 shots) 

ITO layer (0°) 

2 J/cm2 (1000 shots)

F-P filter (41°)
“P” polarization 

5 J/cm2 (1000 shots) 5 J/cm2 (1000 shots)

Electric field impact can be studied by testing at both polarizations 

• 650 µm ± 30 µm 1/e2 diameter beam diameter
• 10 sites per fluence spaced 2 mm apart
• 1,000 shots at 10 Hz
• Visual damage detection with optical microscopy

300 µm 

• Sample 1:  Fabry-Perot filter
20 layers with 10 nm of imbedded
ITO
Substrate/ ((HL)^4  0.963H
(0.072M) 1.972L  H(LH)^4) /Air
Transmission 96.2% “P” 98.7% “S”

• Sample 2:  10 nm thick single ITO
layer
Film resistivity: 1.7x10-4 Ω cm

• Magnetron r.f. sputtering in an Ar atmosphere
• H = Hafnia (99.9% pure target excl. Zn) at 400 W (1% inlet of O2)
• L = Silica (99.995% pure target) at 400 W (No O2)
• M = ITO (In2O3:SnO 10 st%, 99.99% pure) at 220 W (No O2)    [Ref. 2]

F-P filter  (42°)
“S” polarization 
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F-P filter with embedded ITO at 41° “S” pol.

F-P filter with embedded ITO at 41° “P” pol.

A Fabry Perot filter design has simultaneous high 
transmission and low electric field regions 
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The Fabry Perot filter is a compromise between low 
effective absoprtion and high resonant electric fields 
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F-P filter (with ITO) electric field &
abs. vs. spectral bandwidth

F-P filter (non ITO) LIDT vs. spectral
bandwidth  [Ref 1]
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1. C. J. Stolz, M. Caputo, A. J. Griffin, and M. D. Thomas, “1064-nm Fabry-Perot Transmission Filter Laser Damage

Competition” in Laser-Induced Damage in Optical Materials: 2014, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D.
Ristau, and M. J. Soileau, eds., Proc. SPIE 9237 92370N-1-6 (2014).
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Single normal incidence ITO layer versus a 41 degree incidence 
F-P filter with embedded ITO
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Imbedded ITO layer at “S” polarization has an effective 
reduced absorption greater than 10× 
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2. A. K. Sytchkova, M.L. Grilli, S. Boycheva and A. Piegari, “Optical, electrical, structural and microstructural
characteristics of r.f. sputtered ITO films developed for art protection coatings”, Applied Physics A – Matter, A 89
(2007), 63-72.

• Sample 1:  Fabry-Perot filter
20 layers with 10 nm of imbedded ITO
Substrate/ ((HL)^4  0.963H (0.072M) 
1.972L  H(LH)^4) /Air 
94.8% transmission 

• Sample 2:  10 nm thick single ITO layer
3.5 kOhm (2 pt. Probe)

• Magnetron r.f. sputtering in an Ar+ atmosphere
• H = Hafnia (99.9% pure target excl. Zn) at 400 W (1% inlet of O2)
• L = Silica (99.995% pure target) at 400 W (No O2)
• M = ITO (In2O3:SnO 10 st%, 99.99% pure) at 220 W (No O2)    [Ref. 2]

The coatings were manufactured with magnetron r. f. 
sputtering 
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Laser damage probability at 1064 nm (1000 shots) 

ITO layer (0°) 

2 J/cm2 (1000 shots)

F-P filter (41°)
“P” polarization 

5 J/cm2 (1000 shots)

F-P filter  (41°)
“S” polarization 

x J/cm2 (1000 shots)

300 µm 

Laser damage testing reveal
 

s the Fabry-Perot 
approach increases the survivability fluence 
of ITO 
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