
LLNL-JRNL-695289

A Projected Preconditioned Conjugate
Gradient Algorithm for Computing a Large
Eigenspace of a Hermitian Matrix

E. Vecharynski, C. Yang, J. E. Pask

June 16, 2016

Journal of Computational Physics

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

A Projected Preconditioned Conjugate Gradient
Algorithm for Computing a Large Eigenspace of a

Hermitian MatrixI

Eugene Vecharynski∗, Chao Yang

Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron

Road, Berkeley, CA 94720, USA

John E. Pask

Physics Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore,
CA 94550, USA

Abstract

We present an iterative algorithm for computing an invariant subspace associ-
ated with the algebraically smallest eigenvalues of a large sparse or structured
Hermitian matrix A. We are interested in the case in which the dimension of
the invariant subspace is large (e.g., over several hundreds or thousands) even
though it may still be small relative to the dimension of A. These problems arise
from, for example, density functional theory (DFT) based electronic structure
calculations for complex materials. The key feature of our algorithm is that it
performs fewer Rayleigh–Ritz calculations compared to existing algorithms such
as the locally optimal block preconditioned conjugate gradient or the Davidson
algorithm. It is a block algorithm, and hence can take advantage of efficient
BLAS3 operations and be implemented with multiple levels of concurrency. We
discuss a number of practical issues that must be addressed in order to imple-
ment the algorithm efficiently on a high performance computer.

1. Introduction

We are interested in efficient algorithms for computing a small percentage
of eigenpairs of a large Hermitian matrix A that is either sparse or structured

IThis material is based upon work supported by the U.S. Department of Energy, Office of
Science, under Scientific Discovery through Advanced Computing (SciDAC) program funded
by the Offices of Advanced Scientific Computing Research and Basic Energy Sciences contract
number DE-AC02-05CH11231. This work was performed in part under the auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344.

∗Corresponding author
Email address: eugene.vecharynski@gmail.com (Eugene Vecharynski)

Preprint submitted to Journal of Computational Physics June 15, 2016

(i.e., the matrix–vector product Ax can be computed efficiently.) Often these
eigenpairs correspond to the algebraically smallest eigenvalues. This type of
problem arises, for example, in the context of Kohn-Sham density functional
theory (DFT) based electronic structure calculations of large molecules or solids.

When the dimension of the matrix n is above 106, for example, even half
a percent of n amounts to more than 5,000 eigenvalues. When that many
eigenpairs are needed, many of the existing algorithms such as the Lanczos
algorithm [1], the block Davidson algorithm [2, 1], which is widely used in
the electronic structure calculation community, and the Locally Optimal Block
Preconditioned Conjugate Gradient (LOBPCG) algorithm [3] are often not ad-
equate or efficient. This is true even when vast computational resources are
available.

One of the main obstacles to achieving high performance in the existing
algorithm is the cost associated with solving a projected eigenvalue problem
whose dimension is at least as large as the number of eigenvalues to be com-
puted. The solution of this projected eigenvalue problem is part of the so-called
Rayleigh–Ritz (RR) procedure used to extract approximations to the eigenpairs
from a carefully constructed subspace. When the number of desired eigenpairs
is large, the cost for performing this step, which scales cubically with respect
to the dimension of the projected matrix, cannot be ignored. To speed up the
computation, one may use the ScaLAPACK library [4] to perform the dense
eigenvalue calculation in parallel on a distributed memory parallel computer.
However, for this type of calculation, it is generally difficult to achieve good
scalability beyond a few hundred processors.

Attempts have been made in recent work to address the issue of high RR
cost in large-scale eigenvalue computations. One approach is based on the idea
of spectrum slicing [5] in which the spectrum of A is divided into multiple small
intervals, and eigenvalues belonging to different intervals are computed simul-
taneously. This algorithm is potentially scalable and does not suffer from high
RR cost. However, dividing the spectrum in an optimal way is nontrivial. Fur-
thermore, computing interior clustered eigenvalues can be difficult. Another
approach is based on solving the eigenvalue problem as a penalized trace mini-
mization [6]. By moving the orthonormality constraint to the objective function
as a penalty term, this scheme can use unconstrained optimization techniques
without performing frequent RR calculations. However, the efficiency of the
method depends on an optimal choice of the penalty parameter, which may not
be easy to obtain. The significance of reducing the intensity of RR calculations
was pointed out in earlier works as well, e.g., by Stewart and Jennings [7].

In this paper, we present an algorithm that reduces the number of the RR
calculations. Our approach is similar to the Davidson-Liu and LOBPCG meth-
ods in the sense that a preconditioned short-term recurrence is used to update
the approximation to the desired eigenspace. A key difference in the proposed
scheme is that the coefficients of the short-term recurrence are obtained by solv-
ing k/l independent 3l× 3l eigenvalue problems instead of one large 2k× 2k or
3k × 3k eigenvalue problem, where k is the number of desired eigenpairs and l
is a chosen block size independent of k. Instead of large RR computations at

2

every iteration, periodic basis orthogonalization is performed in the new algo-
rithm. The computational kernels used in this orthogonalization step typically
run more efficiently than dense diagonalization on high performance parallel
computers.

The idea of replacing the solution of a large projected eigenproblem by a
sequence of smaller problems has been considered by Knyazev in the context
of the LOBPCG II algorithm [3], as a means to reduce the dimension of the
LOBPCG trial subspace from 3k to k. While the approach significantly reduces
the RR cost compared to the original version of LOBPCG, its application within
LOBPCG II does not eliminate the solution of a possibly large dense eigenprob-
lem at every iteration. Specifically, instead of solving a 3k-by-3k eigenproblem
as in the original LOBPCG method, LOBPCG II solves a k-by-k eigenproblem,
which is still costly for large k.

Our approach, which we refer to as the Projected Preconditioned Conjugate
Gradient (PPCG) algorithm, can be easily implemented by making a relatively
small modification to the existing schemes implemented in many scientific soft-
ware packages, such as planewave DFT based electronic structure calculation
software packages. We will show by numerical examples that PPCG indeed
outperforms the current state-of-the-art algorithms implemented in the widely
used Quantum Espresso (QE) planewave density functional electronic structure
software package [8]

In this work we only consider the the standard eigenvalue problem Ax = λx.
The generalization of the new algorithm to the case of the generalized eigenvalue
problem Ax = λBx is straightforward and can be performed without factoring
the Hermitian positive definite matrix B.

The paper is organized as follows. In section 2, we discuss a few optimiza-
tion based approaches for large-scale eigenvalue computations. We present the
basic version of the PPCG algorithm in section 3. The connection between our
approach and other available algorithms is discussed in section 4. A number of
practical aspects for implementing the new method are addressed in section 5.
Section 6 contains numerical results. Conclusions are given in section 7.

2. Trace Minimization

The invariant subspace associated with the k algebraically smallest eigen-
values of A can be computed by solving the following constrained optimization
problem

min
X∗X=I

1

2
trace(X∗AX), (1)

where X ∈ Cn×k.
There exist several approaches for large-scale eigenvalue computations that

are based directly on formulation (1). These approaches treat the eigenvalue
problem as the minimization problem, which allows applying relevant optimiza-
tion techniques for computing the targeted eigenpairs.

A number of popular algorithms for computing invariant subspaces are based
on gradient type methods for minimizing (1). In particular, projecting the

3

gradient of the objective function in (1) along the tangent of the orthonormality
constraint X∗X = I yields the residual

R = (I −XX∗)AX = AX −X(X∗AX), (2)

which can be chosen as the search direction in an optimization algorithm de-
signed to solve (1). A preconditioner T can be introduced to yield a modified
search direction TR.

In the simplest version of the Davidson-Liu algorithm, a new approximation
X̄ is constructed by taking it to be a linear combination of X and TR, i.e., we
write

X̄ = XC1 + TRC2,

where C1, C2 ∈ Ck×k are chosen to minimize the trace of A within the subspace
spanned by columns of X and TR. The optimal C1 and C2 can be obtained by
computing the lowest k eigenpairs of the projected 2k× 2k eigenvalue problem

(S∗AS)C = (S∗S)CΩ, C∗(S∗S)C = I, (3)

where S = [X, TR], C ∈ C2k×k, and Ω ∈ Rk×k is a diagonal matrix that
contains the k algebraically smallest eigenvalues. We can then take C1 to be the
first k rows of C and C2 to contain the remaining rows of C. The main steps of
the simplest version of the Davidson-Liu algorithm are outlined in Algorithm 1.

Algorithm 1: Simplest version of Davidson-Liu algorithm

Input: The matrix A, a preconditioner T and the starting guess of the invariant
subspace X(0) ∈ Cn×k associated with the k smallest eigenvalues of A,
X(0)∗X(0) = I;

Output: An approximate invariant subspace Cn×k associated with k smallest
eigenvalues of A;

1: X ← X(0);
2: while convergence not reached do
3: R← T (AX −X(X∗AX));
4: S ← [X, R];
5: Find eigenvectors C associated with the k smallest eigenvalues Ω of (3);
6: X ← SC;
7: end while

Algorithm 1 can be modified to accumulatively include multiple TR blocks
computed from different iterations in S, which gives the conventional Davidson
method [2]. Alternatively, the algorithm’s iterations can be altered to include
the so-called “conjugate” direction P as part of the search space S, i.e., one can
let S ← [X,TR, P] and solve a 3k × 3k projected eigenvalue problem (3). The
block P can be constructed as a linear combination of TR and P computed at
the previous iteration. Such a modification leads to the locally optimal block
preconditioned conjugate gradient (LOBPCG) algorithm originally proposed
in [3].

4

When a good preconditioner T is available, as is the case for planewave based
electronic structure calculations, both the simplest version of the Davidson-Liu
algorithm and the LOBPCG algorithm can converge rapidly. The number of
iterations required by LOBPCG to reach convergence is often smaller than that
taken by the Davidson-Liu algorithm, but each Davidson iteration is slightly
cheaper because it solves a 2k × 2k instead of a 3k × 3k projected eigenvalue
problem. When k is relatively small, such extra cost per iteration is negligible.
However, when k is relatively large (e.g., on the order of thousands or more)
the cost of solving the projected eigenvalue problem, which we refer to as the
RR cost, can no longer be ignored.

Although the RR eigenvalue problem can be solved in parallel using the
ScaLAPACK library, the performance of this part of the calculation generally
does not scale well beyond a few hundred cores. Although some progress has
recently been made on speeding up symmetric dense eigenvalue calculation on
distributed memory parallel computers [9, 10], the performance of the latest
algorithms still lags behind that of level three BLAS and other computational
building blocks of electronic structure codes.

Another optimization based approach for eigenvalue computations was pro-
posed by Sameh and Wisniewski [11, 12]. Their TRACEMIN algorithm is dif-
ferent from the gradient type schemes applied to (1). It relies on the trace
minimization procedure, which solves a sequence of correction problems of the
form

min
X∗∆=0

trace(X −∆)∗A(X −∆). (4)

The solution of (4) is obtained by iteratively solving the projected linear system

(MAM)∆ = MAX, X∗∆ = 0,

where M = I −XX∗. A RR procedure is then performed within the subspace
spanned by the columns of X−∆ in each step to produce a new approximation
to the solution of (1).

3. The Projected Preconditioned Conjugate Gradient algorithm

In this section, we present a preconditioned conjugate gradient type of
scheme to find a solution of the minimization problem (1). The proposed
approach is motivated by the gradient projection techniques for constrained
optimization (e.g., [13, 14, 15]).

Given a function f(x) whose minimum is sought over a set Q defined by con-
straints, the general framework of gradient projection methods is to iteratively
perform a sequence of updates x̄ ← x + γs, where the updated approxima-
tion x̄ is allowed to leave the set Q that represents feasible regions. The new
approximation, however, is then projected back to the feasible set Q, i.e., the
new iterate x is defined as x ← MQx̄, where MQ is an appropriately defined
projector onto Q.

The search direction s can be defined in a number of ways. For example, it
can be chosen as the gradient∇f(x) of f evaluated at the current approximation

5

x [16, 17]. In equality constrained optimization, the search direction is often
taken to be the projection of the gradient onto the tangent of constraints, i.e.,
s = M∇f(x), where M is a corresponding projection defined in terms of the
normal of the equality constraint that implicitly defines the region Q in which
x must lie [18, 19]. In particular, for the equality constraint X∗X = I in (1),
M = I −XX∗.

We consider an extension of the gradient projection approach to trace mini-
mization (1) in which the approximation to the minimizer is updated as follows:

X̄ ← XCX +WCW + PCP , X ←MQX̄, (5)

where the search direction W = (I −XX∗)TR is given by the preconditioned
residual TR = T (AX−X(X∗AX)) projected onto the tangent of the orthonor-
mality constraint and P = (I −XX∗)(W ′C ′W − P ′C ′P) represents a conjugate
direction in the same tangent space. The “prime notation” refers to the corre-
sponding quantities from the previous step.

Extracting the best approximation from the subspace spanned by the columns
of X, W and P (as traditionally done) would require a RR calculation that is
costly when the number of desired eigenpairs is large. To reduce such cost, we
relax the optimality requirement on the search parameters CX , CW , and CP

in (5), and allow them to introduce non-orthogonality in the updated columns
of X̄. This places X̄ outside of the feasible region given by the orthogonality
constraint, which is remedied by the subsequent application of a projector MQ.

Specifically, let us restrict CX , CW , and CP to be diagonal matrices. An
advantage of such a restriction is that the iteration parameters associated with
each column of the updated X can be determined independently. More gener-
ally, it is possible to allow CX , CW and CP to be block diagonal matrices with
small diagonal blocks (e.g., 5× 5 or 10× 10 blocks). One can then expect that,
if properly chosen, the extra degrees of freedom introduced by these diagonal
blocks can reduce the iteration count. The general block diagonal formulation
will be discussed in section 5.1.

Let CX = diag{α1, . . . , αk}, CW = diag{β1, . . . , βk}, and CP = diag{γ1, . . . , γk}.
Then iteration (5) gives a sequence of k single-vector updates

x̄j ← αjxj + βjwj + γjpj , j = 1, . . . , k; (6)

where x̄j , xj , wj , and pj denote the jth columns of X̄, X, W , and P , respec-
tively. Let us choose αj , βj , and γj in such a way that each corresponding
updated column x̄j yields the minimizer of x∗Ax, subject to the normalization
constraint ‖x‖ = 1, over the corresponding subspace spanned by xj , wj , and
pj . Clearly, the computations of the parameter triplets are independent of each
other, and can be performed by solving k separate 3-by-3 eigenvalue problems.

As a result of the decoupled steps (6), the columns x̄j are generally not
orthogonal to each other. Moreover, they can all converge to the same eigenvec-
tor associated with the smallest eigenvalue of A without any safeguard in the
algorithm. To overcome this issue, we project the updated block X̄ back onto
the orthonormality constraint X∗X = I by performing a QR factorization of X

6

and setting the new approximation X to the obtained orthogonal factor. This
step corresponds to the action of applying the projector MQ in (5), which we
further denote by X ← orth(X̄).

Algorithm 2: The projected preconditioned conjugate gradient (PPCG)
algorithm

Input: The matrix A, a preconditioner T , and a starting guess of the invariant
subspace X(0) ∈ Cn×k associated with the k smallest eigenvalues of A;

Output: An approximate invariant subspace X ∈ Cn×k associated with the k
smallest eigenvalues of A;

1: X ← orth(X(0)); P ← [];
2: while convergence not reached do
3: W ← T (AX −X(X∗AX));
4: W ← (I −XX∗)W ;
5: P ← (I −XX∗)P ;
6: for j = 1, . . . , k do
7: S ← [xj , wj , pj];
8: Find the smallest eigenpair (θmin, cmin) of S∗ASc = θS∗Sc, where c∗S∗Sc = 1;
9: αj ← cmin(1), βj ← cmin(2); and γj ← cmin(3) (γj = 0 at the initial step);

10: pj ← βjwj + γjpj ;
11: xj ← αjxj + pj .
12: end for
13: X ← orth(X);
14: If needed, perform the Rayleigh-Ritz procedure within span(X);
15: end while

The proposed approach is outlined in Algorithm 2 that we refer to as the
Projected Preconditioned Conjugate Gradient (PPCG) algorithm. Note that in
practical implementations we require the method to perform the RR procedure
every once in a while (step 14). Such periodic RR computations allow “rotat-
ing” the columns of X closer to the targeted eigenvectors. They also provide
opportunities for us to identify converged eigenvectors and deflate them through
a locking mechanism discussed in section 5. In our experiments, we typically
perform an RR calculation every 5-10 iterations, which is significantly less fre-
quent compared to the existing eigensolvers that perform the RR procedure at
each step.

In principle, the RR procedure in step 14 of Algorithm 2 can be omitted. In
this case, the columns of the iteratesX generally do not converge to eigenvectors,
i.e., X only represents some orthonormal basis of the approximate eigenspace.
However, in a number of our test problems, the absence of step 14 led to the
convergence deterioration. Therefore, performing a periodic RR step can be
helpful to ensure the eigensolver’s robustness. We will return to this discussion
in section 5.

An important element of Algorithm 2 is the orthonormalization of the block
X in step 13. It is clear that the orth(X) procedure is well-defined if and only

7

if it is applied to a full-rank matrix, i.e., if and only if the single-vector sweep
in Steps 6-12 yields a block X of linearly independent vectors. The following
theorem shows that the linear independence among columns of X is guaranteed
if all the parameters αj are nonzero.

Theorem 1. Let vectors x̄j be computed according to (6), where xj, wj, and pj
denote the jth columns of X, W , and P , respectively; and let X∗X = I. Then
the matrix X̄ = [x̄1, . . . , x̄k] is full-rank if αj 6= 0 for all j.

Proof. Let us write (6) in the matrix form as

X̄ = XCX +K, (7)

where K = WCW + PCP ; with CX , CW , CP being the diagonal matrices of
iteration coefficients αj , βj , and γj , respectively. We assume, on the contrary,
that columns of X̄ are linearly dependent. Then there exists a vector y 6= 0 such
that X̄y = 0. It follows from (7) and the conditions X∗X = I and X∗K = 0
that CXy = 0. Since CX is diagonal, then at least one of its diagonal elements
must be zero. This contradicts the assumption that αj 6= 0 for all j. �

Theorem 1 provides us with a simple indicator of rank deficiency in X̄. In the
case when X̄ becomes rank deficient, there is a simple way to fix the problem.
We can simply backtrack and exclude the P block in (5) and take a steepest
descent-like step by recomputing the coefficients in CX and CW .

The next theorem shows that, in this case, if the preconditioner T is Hermi-
tian positive definite (HPD), the recomputed αj ’s are guaranteed to be nonzero
and therefore the updatedX is full rank, unless some columns ofW become zero,
which indicate the convergence of some eigenvectors that should be deflated at
an earlier stage.

Theorem 2. Let P ≡ 0 in (5) so that the update in X are computed as

x̄j ← αjxj + βjwj , j = 1, . . . , k. (8)

If the preconditioner T is HPD and the jth column rj of the residual AX −
X(X∗AX) is nonzero, then X̄ = [x̄1, . . . , x̄k] must have a full rank.

Proof. It follows from Theorem 1 that if X̄ is rank deficient, then there is at
least one j such that αj = 0. Since αj is the first component of an eigenvector
c = (αj , βj)

∗ of the 2-by-2 projected eigenproblem(
x∗jAxj x∗jAwj

x∗jAwj w∗jAwj

)
c = θ

(
x∗jxj 0

0 w∗jwj

)
c, (9)

the coefficient βj must be nonzero, and the matrix on the left hand side of (9)
must be diagonal, i.e., x∗jAwj = 0. However, since

x∗jAwj = (Xej)
∗A(I −XX∗)T [(I −XX∗)AX] ej = r∗jTrj ,

rj must be zero since T is assumed to be HPD. This contradicts the assumption
that rj is nonzero. Hence, it follows that αj 6= 0, and X̄ must be full rank. �

We note, however, that the situation where αj is zero is very unlikely in
practice and, in particular, has never occurred in our numerical tests.

8

4. Relation to other algorithms

The PPCG algorithm is similar to a variant of the LOBPCG algorithm
called LOBPCG II presented in [3], in the sense that it optimizes the subspace
via k independent 3 × 3 RR computations rather than one large 3k × 3k one,
as in LOBPCG. The PPCG algorithm generalizes this to 3l × 3l RR compu-
tations, where l is a chosen block size, to increase convergence rate and better
exploit available computational kernels. The main difference, however, is that
in LOBPCG II, the RR procedure is performed within the subspace spanned by
the columns of X in each iteration, whereas in PPCG, X is merely orthogonal-
ized periodically (e.g., every 5 or 10 iterations). Another difference is related
to the construction of the blocks W and P . In contrast to the proposed PPCG
algorithm, LOBPCG II does not carry out the orthogonalizations of the precon-
ditioned residuals and conjugate directions against the approximate eigenspace
X. Furthermore, to allow the replacement of RR with periodic orthogonaliza-
tion, the definition of the PPCG residuals has been generalized to the case in
which X is not necessarily formed by a basis of Ritz vectors and the matrix
X∗AX is not necessarily diagonal. As a result, the separate minimizations in
PPCG and LOBPCG II are performed with respect to different subspaces, and
the methods are not equivalent even if the PPCG block size is restricted to 3×3.

The TRACEMIN algorithm [11] also becomes similar to the PPCG algorithm
if the RR procedure is performed periodically. Instead of minimizing several
Rayleigh quotients, TRACEMIN solves several linear equations using a standard
preconditioned conjugate gradient (PCG) algorithm. Typically, more than one
PCG iteration is needed to obtain an approximate solution to each equation.

The PPCG method can also be viewed as a compromise between a full block
minimization method such as the LOBPCG method, which converges rapidly
but has a higher RR cost per iteration, and a single vector method combined
with an appropriate deflation scheme (also known as a band-by-band method),
which has a negligible RR cost but slower overall convergence rate because one
eigenpair is computed at a time. Also, band-by-band methods cannot effectively
exploit the concurrency available in multiplying A with a block of vectors, and
hence are often slower in practice on high performance parallel computers.

5. Practical aspects of the PPCG algorithm

In this section, we address several practical aspects of the PPCG algorithm
that are crucial for achieving high performance. We first consider the general-
ization of the single-vector updates in (6) to block updates.

5.1. Block formulation

As indicated earlier, we can allow CX , CW and CP to be block diagonal.
In this case, CX = diag{CX1

, . . . , CXs
}, CW = diag{CW1

, . . . , CWs
}, and CP =

diag{CP1
, . . . , CPs

}, and X, W and P can be partitioned conformally as X =
[X1, X2, . . . , Xs], W = [W1,W2, . . . ,Ws], and P = [P1, P2, . . . , Ps], where the
jth subblocks of X, W , and P contain kj columns, and

∑s
j=1 kj = k.

9

The single-column sweep (6) is then replaced by block updates

X̄j ← XjCXj +WjCWj + PjCPj , j = 1, . . . , s. (10)

After columns of X̄ = [X̄1, X̄2, . . . , X̄s] are orthonormalized, we obtain a new
approximation which is used as a starting point for the next PPCG iteration. For
each j, the block coefficients CXj

, CWj
, and CPj

in (10) are chosen to minimize
the trace (1) within span{Xj ,Wj , Pj}. This is equivalent to computing the
kj smallest eigenvalues and corresponding eigenvectors of 3kj-by-3kj eigenvalue
problems (3) with S = [Xj ,Wj , Pj]. Thus, the block formulation of the PPCG
algorithm performs s iterations of the “for” loop in lines 6-12 of Algorithm 2.

Note that, in the extreme case where s = 1, i.e., the splitting corresponds
to the whole block, the PPCG algorithm becomes equivalent to LOBPCG [3].
In this case the matrices CX , CW , and CP are full and generally dense, and the
updated solution is optimal within the subspace spanned by all columns of X,
W , and P .

As we will demonstrate in section 6, making CX , CW and CP block diagonal
generally leads to a reduction in the number of outer iterations required to
reach convergence. However, as the block size increases, the cost associated
with solving s 3kj × 3kj eigenvalue problems also increases. The optimal choice
of kj will be problem- and computational platform dependent. Heuristics must
be developed to set kj to an appropriate value in an efficient implementation.

In our current implementation, we set kj to a constant sbsize with the
exception that the last block of X, W , and P may contain a slightly different
number of columns. In principle, one can choose different kj values for each
subblock. For example, this could be helpful if additional information about
the distribution of A’s spectrum is available. In this case, a proper uneven
splitting could potentially allow for a better resolution of eigenvalue clusters.

5.2. Convergence criteria

We now discuss appropriate convergence criteria for terminating the PPCG
algorithm. If, instead of individual eigenpairs, we are only interested in the
invariant subspace associated with the smallest eigenvalues of A, we may use
the following relative subspace residual norm

‖AX −X(X∗AX)‖F
‖X∗AX‖F

, (11)

as a metric to determine when to terminate the PPCG iteration, where ‖ · ‖F
is the Frobenius norm. No additional multiplication of A with X is required in
the residual calculation. Checking the subspace residual does not require a RR
calculation.

Since the above measure monitors the quality of the whole approximate
invariant subspace, it does not allow one to see whether the subspace contains
good approximations to some of the eigenvectors that can be locked and deflated
from subsequent PPCG iterations. This is a reason periodic RR can be helpful.
We will discuss deflation in section 5.7.

10

In some cases, especially in the early PPCG iterations in which significant
changes in X can be observed, it may not be necessary to check the subspace
residual. Since the objective of the algorithm is to minimize the trace of X∗AX,
it is reasonable to use the relative change in the trace, which can be computed
quickly, as a measure for terminating the PPCG iteration. To be specific, if X
and X ′ are approximations to the desired invariant subspace obtained at the
current and previous iterations, we can use

|trace (X∗AX)− trace (X ′∗AX ′)|
trace (X∗AX)

< τ,

as a criterion for terminating the PPCG iteration, where τ is an appropriately
chosen tolerance. This criterion is often used in an iterative eigenvalue calcula-
tion called within each self-consistent field iteration for solving the Kohn–Sham
nonlinear eigenvalue problem [20, 21].

5.3. Buffer vectors

When the kth eigenvalue is not well separated from the (k+ 1)st eigenvalue
of A, the convergence of that eigenvalue may be slow in subspace-projection
based solution methods, see, e.g., [3].

As noted in [22], one way to overcome this, is to expand the block X with l
additional columns Yl (a standard approach in electronic structure calculations)
which we call buffer vectors. In this case, we set X ← [X,Yl] and apply Algo-
rithm 2 to the extended block with k′ = k + l columns. The main difference
is that one has to monitor the convergence only to the invariant subspace that
is associated with the k wanted eigenvalues, i.e., only the initial k columns of
the expanded X should be used to evaluate the convergence metrics discussed
in the previous section.

It is clear that introducing buffer vectors increases the cost of the algorithm,
per iteration. For example, the cost of matrix–block multiplications with A
becomes higher, more work is required to perform dense linear algebra (BLAS3)
operations, the number of iterations of the inner “for” loop in lines 6-12 increases
to k′ = k + l steps, etc. However, the number of buffer vectors l is normally
chosen to be small relative to k, e.g., 1−5% of the number of targeted eigenpairs,
and the increase in the computational work per iteration is relatively small, while
the decrease in iterations required to reach convergence can be substantial.

5.4. Orthogonal projection of the search direction

The projector I−XX∗ in the definition of search directions W and P turns
out to be crucial for achieving rapid convergence of the PPCG algorithm. This
is in contrast to the LOBPCG algorithm, where applying I − XX∗ is not as
important, at least not in exact arithmetic, because a new approximation to
the desired invariant subspace is constructed from the subspace spanned by the
columns of X, W and P . The use of I − XX∗ in the construction of W and
P does not change that subspace. However, in PPCG, application of I −XX∗

11

0 5 10 15 20 25 30

10
−6

10
−4

10
−2

10
0

10
2

Effects of the projection steps (SiH4)

Iteration number

F
ro

b
e
n

iu
s
 n

o
rm

 o
f

th
e
 r

e
s
id

u
a
l

PPCG

PPCG without step 4

PPCG without step 5

0 10 20 30 40 50 60 70

10
−4

10
−2

10
0

10
2

Effects of the projection steps (Li318)

Iteration number

F
ro

b
e
n

iu
s
 n

o
rm

 o
f

th
e
 r

e
s
id

u
a
l

PPCG

PPCG without step 4

PPCG without step 5

PPCG without step 4 and 5

Figure 1: Effects of the projection steps 4 and 5 of Algorithm 2 on convergence. The PPCG
variants are applied to compute 10 (left) and 2,000 (right) lowest eigenpairs of the converged
Kohn-Sham Hamiltonian of the silane molecule (left) and the Li318 lithium-ion electrolyte
(right).

affects the low-dimensional subspaces spanned by individual columns of X, W ,
and P .

As demonstrated in Figure 1, the PPCG algorithm can be very sensitive to
the orthogonal projector used in steps 4 and 5 of Algorithm 2. We observe that
removing either of the two projection steps can lead to a severe deterioration of
convergence. In Figure 1 (left) the PPCG algorithm is used to compute the 10
lowest eigenpairs of a Kohn-Sham Hamiltonian of the SiH4 (silane) molecule. In
Figure 1 (right), a similar computation is performed for the Li318 (lithium-ion
electrolyte) system, where 2, 000 eigenpairs are sought.

Interestingly, we observed that the effects of applying I − XX∗ are more
pronounced in the cases where A has multiple eigenvalues. Furthermore, in
some experiments, we noticed that skipping the projector only in P may not
alter the convergence; see Figure 1 (right). Nevertheless, we recommend keeping
(I −XX∗) for computing both W and P to achieve robust convergence.

5.5. Orthogonalization of the approximate invariant subspace

There are a number of ways to obtain an orthonormal basis of X after its
columns have been updated by the “for” loop in lines 6-12 of Algorithm 2. If
the columns of X are far from being linearly dependent, an orthonormalization
procedure based on using the Cholesky factorization of X∗X = R∗R, where
R is a unit upper triangular matrix, is generally efficient. In this case, X is
orthonormalized by

X ← XR−1,

i.e., step 13 of Algorithm 2 is given by the QR decomposition based on the
Cholesky decomposition (the Cholesky QR factorization).

If the columns of X are almost orthonormal, as expected when X is near the
solution to the trace minimization problem, we may compute the orthonormal
basis as X ← X(X∗X)−1/2, where (X∗X)−1/2 = (I +Y)−1/2 can be effectively

12

approximated by several terms in the Taylor expansion of f(x) =
√

1 + y. This
gives the following orthogonalization procedure:

X ← X(I − Y/2 + 3Y 2/8− 5Y 3/16 + · · ·), Y = X∗X − I.

Since Y is likely to be small in norm, we may only need three or four terms in
the above expansion to obtain a nearly orthonormal X. An attractive feature of
this updating scheme is that it uses only dense matrix–matrix multiplications
which can be performed efficiently on modern high performance computers.
Note that the updated matrix represents an orthonormal factor in the polar
decomposition [23] of X, which gives a matrix with orthonormal columns that
is closest to X [24].

0 5 10 15 20 25 30 35 40

10
−8

10
−6

10
−4

10
−2

10
0

Effects of orthogonalization (SiH4)

F
ro

b
e
n

iu
s
 n

o
rm

 o
f

th
e
 r

e
s
id

u
a
l

Iteration number

QR every step

QR every 5 steps

QR every 8 steps

QR every 10 steps

QR every 15 steps

Figure 2: Effects of removing the orthonormalization step 13 of Algorithm 2, when computing
the 4 lowest eigenpairs of a Kohn-Sham Hamiltonian associated with the silane molecule. The
problem size is 2, 103.

We have observed that columns of X often remain nearly orthonormal af-
ter they are updated according to (10). Motivated by this observation, we
experimented with performing orthonormalization periodically (step 13 of Al-
gorithm 2) in the PPCG iteration. Figure 2 demonstrates the effects of this
strategy on the convergence of the algorithm. The plotted convergence curves
correspond to PPCG runs in which orthonormalization is performed every t
steps, where t = 1, 5, 8, 10, 15. In our implementation, we use the Cholesky QR
factorization to orthonormalize the columns of X.

As can be seen in Figure 2, skipping the QR factorization of X for a small
number of PPCG iterations (up to 5 steps in this example) does not affect the
convergence of the algorithm. In this case, the loss of orthogonality, which can
be measured by ‖X∗X− I‖F , is at most O(10−1). Note that when the columns
of X are not orthonormal, the projectors in steps 4 and 5 of Algorithm 2 become
approximate projectors. Nevertheless, the convergence of PPCG is not substan-
tially affected as long as t is not too large. However, if we reduce the frequency
of the QR factorizations significantly, the number of PPCG iterations required
to reach convergence starts to increase. For this example, when we perform the
QR factorization every 15 iterations, PPCG fails to converge (within an error

13

tolerance of 10−2) within 40 iterations. In this case, the loss of orthogonality in
X reaches O(1), which severely affects the convergence of the method.

Thus, in order to gain extra computational savings, we can devise an optional
heuristic based on the measured loss of orthogonality. We can decide to skip
step 13 of Algorithm 2 if the loss of orthogonality is relatively small.

5.6. Periodic RR computation

For many problems, the orthogonal projection of W and P against columns
of X and subsequent orthogonalization are not enough to ensure that X con-
verges rapidly to a basis of the desired invariant subspace. We found that
a practical remedy for avoiding possible convergence degradation or failure is
to perform the RR procedure periodically, which has the effect of systemat-
ically repositioning the jth column of X towards the eigenvector associated
with the jth eigenvalue of A. In this case, since each column of X is forced
to be sufficiently close to an eigenvector, minimizing k Rayleigh quotients sep-
arately becomes just as effective as minimizing the trace of X∗AX under the
orthonormality constraint. Therefore, in practical implementations, we perform
RR periodically, even though PPCG has been observed to converge without
performing this step for some problems. This is done in step 14 of Algorithm 2.

Another reason periodic RR may be advantageous is that it provides an op-
portunity to lock converged eigenvectors and reduce the number of sparse matrix
vector multiplications required to find the remaining unconverged eigenvectors.

Clearly, introducing the periodic RR calculation increases the cost of some
PPCG iterations and can potentially make the algorithm less scalable due to
the lack of scalability of the dense eigensolver. However, the extra cost can
be offset by accelerated convergence of the algorithm and reduced number of
sparse matrix vector multiplications once some approximate eigenvectors have
converged. In our PPCG implementation, we control the frequency of the RR
calls by a parameter rr period. Our numerical experiments suggest that a good
value of rr period is between 5 and 10. Because good approximations to desired
eigenvectors do not emerge in the first few PPCG iteration, rr period can be
set to a relatively large value and then decreased in later iterations when many
converged eigenvector approximations can be found and locked.

5.7. Locking converged eigenvectors

Even before the norm of the subspace residual R ≡ AX − X(X∗AX) be-
comes small, some of the Ritz vectors associated with the subspace spanned by
columns of X can become accurate. However, these Ritz vectors generally do not
reveal themselves through the norm of each column of R because each column
of X may consist of a linear combination of converged and unconverged eigen-
vector approximations. The converged eigenvector approximations can only be
revealed through the RR procedure. As mentioned earlier, by performing an
RR calculation, we rotate the columns of X to the Ritz vectors which are used
as starting points for independent Rayleigh quotient minimization carried out
in the inner loop of the next PPCG iteration.

14

Once the converged Ritz vectors are detected, we lock these vectors by keep-
ing them in the leading columns of X. These locked vectors are not updated in
inner loop of the PPCG algorithm until the next RR procedure is performed.
We do not need to keep the corresponding columns in the W and P matrices.
However, the remaining columns in W and P must be orthogonalized against all
columns of X. This “soft locking” strategy is along the lines of that described
in [22].

A detailed description of the PPCG algorithm, incorporating the above prac-
tical aspects, is given in Algorithm 3 of Appendix A.

6. Numerical examples

In this section, we give a few examples of how the PPCG algorithm can be
used to accelerate both the SCF iteration and the band structure analysis in
Kohn-Sham DFT calculations. We implement PPCG within the widely used
Quantum Espresso (QE) planewave pseudopotential density functional elec-
tronic structure code [8], and compare the performance of PPCG with that
of the state-of-the-art Davidson solver implemented in QE. The QE code also
contains an implementation of a band-by-band conjugate gradient solver. Its
performance generally lags behind that of the Davidson solver, however, espe-
cially when a large number of eigenpairs is needed. Therefore, we compare to
the Davidson solver here.

In QE, the Davidson algorithm can construct a subspace Y of dimension up
to 4k before it is restarted. However, when the number of desired eigenpairs k is
large, solving a 4k × 4k projected eigenvalue problem is very costly. Therefore,
in our tests, we limit the subspace dimension of Y to 2k.

The problems that we use to test the new algorithm are listed in Table 1. A
sufficiently large supercell is used in each case so that we perform all calculations
at the Γ-point only. The kinetic energy cutoff (ecut), which determines the
the number of planewave coefficients (nG), as well as the number of atoms
(na) for each system are shown. Norm conserving pseudopotentials are used
to construct the Kohn-Sham Hamiltonian. Therefore, all eigenvalue problems
we solve here are standard eigenvalue problems, although our algorithm can
be easily modified to solve generalized eigenvalue problems. The local density
approximation (LDA) [21] is used for exchange and correlation. The particular
choice of pseudopotential and exchange-correlation functional is not important
here, however, since we focus only on the performance of the eigensolver.

The distribution of eigenvalues for each problem is plotted in Figure 3. We
can see that there are several clusters of eigenvalues for Li318 and bulk Si.
They are insulating and semiconducting, respectively. No visible spectral gap
can be observed for Graphene512. It is known to be a metallic system. The test
cases thus encompass the full range of electronic structures from insulating to
metallic.

All tests were performed on Edison, a Cray XC30 supercomputer main-
tained at the National Energy Research Scientific Computer Center (NERSC)

15

Problem na ecut (Ryd) nG
Li318 318 25 206,691

Graphene 512 25 538,034
bulk Si 1000 35 1,896,173

Table 1: Test problems

0 200 400 600 800 1000
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Eigenvalue distribution of Li318

Index

E
ig

e
n

v
a
lu

e

(a) Li318

0 500 1000 1500
−1.5

−1

−0.5

0

0.5

1
Eigenvalue distribution of graphene512

Index

E
ig

e
n

v
a
lu

e

(b) graphene512

500 1000 1500 2000

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Eigenvalue distribution of bulk Si

Index

E
ig

e
n

v
a
lu

e

(c) bulk Si

Figure 3: Eigenvalue distributions for test problems.

at Lawrence Berkeley National Laboratory. Each node on Edison has two
twelve-core Intel 2.4GHz “Ivy Bridge” processor sockets. It is equipped with
64 gigabyte (GB) DDR3 1600MHz shared memory. However, memory access
bandwidth and latency are nonuniform across all cores. Each core has its own
64 kilobytes (KB) L1 and 256 KB L2 caches. A 32MB L3 cache is shared among
12 cores. Edison nodes are connected by a Cray Aries network with Dragonfly
topology and 23.7 TB/s global bandwidth.

We follow the same parallelization strategy implemented in the QE package
to perform the multiplication of the Hamiltonian and a wavefunction and dis-
tributed dense matrix–matrix multiplications. The most expensive part of the
Hamiltonian and wavefunction multiplication is the three-dimensional FFTs.
Each FFT is parallelized over nz cores, where nz is the number of FFT grid
points in the third dimension. Multiple FFTs can be carried out simultaneously
on different cores when the “-ntg” option is used.

We do not use the multi-threaded feature of QE. The planewave coefficients
are partitioned and distributed by rows. Therefore, the dense matrix–matrix
multiplications are carried out by calling the DGEMM subroutine in BLAS3 on
each processor and performing a global sum if necessarily. The ScaLAPACK
library is used to solve the dense projected eigenvalue problem and to perform
the Cholesky factorization required in the Cholesky QR factorization. Because
ScaLAPACK requires a 2D square processor grid for these computations, a
separate communication group that typically consists of fewer computational
cores is created to complete this part of the computation. Table 2 gives the
default square processor configurations generated by QE when a certain number
of cores are used to solve the Kohn-Sham problem. Although we did not try
different configurations exhaustively, we found the default setting to be close to

16

optimal, i.e., adding more cores to perform ScaLAPACK calculations generally
does not lead to any improvement in timing because of the limited amount of
parallelism in dense eigenvalue and Cholesky factorization computations and
the communication overhead.

ncpus Processor grid

200 10x10
400 14x14
800 20x20

1,600 28x28
2,400 34x34
3,000 38x38

Table 2: Default ScaLAPACK processor grid configurations used by QE for different total
core counts.

6.1. Band energy calculation

We first show how PPCG performs relative to the Davidson algorithm when
they are used to solve a single linear eigenvalue problem defined by converged
electron density and its corresponding Kohn-Sham Hamiltonian. Table 3 shows
the total wall clock time required by both the block Davidson algorithm and the
PPCG algorithm for computing the k lowest eigenpairs of a converged Kohn-
Sham Hamiltonian. This is often known as the band structure calculation,
although we only compute band energies and corresponding wavefunctions at
the Γ-point of the Brillouin zone.

In all these calculations, we perform the RR procedure every 5 iterations.
Depending on the problem, the subblock size sbsize is chosen to be 5 or 50. In
our experience, such choice of sbsize leads to satisfactory convergence behavior
of the PPCG algorithm (we address this question in more detail below). For all
tests, the number of buffer vectors nbuf is set to 50.

For both Li318 and Graphene512, we terminate the Davidson iteration when
the relative subspace residual norm defined in (11) is less than tol = 10−2. Since
residual norms are only calculated when the Davidson iteration is restarted, the
actual residual norm associated with the approximate solution produced by the

Problem ncpus k sbsize Time PPCG Time Davidson

Li318 480 2,062 5 49 (43) 84 (27)
Graphene512 576 2,254 50 97 (39) 144 (36)

bulk Si 2,400 2,550 50 189 (78) 329 (77)

Table 3: Comparison of the total wall clock time (in seconds) used by PPCG and Davidson
to compute the lowest k eigenpairs. Numbers in parentheses correspond to iteration counts.

17

Davidson algorithm may be much less than tol upon termination. We use that
relative residual norm as the stopping criterion for the PPCG algorithm. For
bulk Si, we set tol to 10−3.

The results shown in Table 3 indicate that PPCG performs much better
on the test problems than Davidson’s method. We observe almost a factor of
two speedup in terms of wall clock time. Note that the number of iterations
required by PPCG is noticeably higher than that of Davidson’s method in some
cases (e.g., Li318). However, most PPCG iterations are much less expensive
than Davidson iterations because they are free of RR calculations. The reduced
number of RR calculations leads to better overall performance. As expected,
as the sbsize value increases, the difference in total number of outer iterations
between PPCG and Davidson becomes smaller. For example, for bulk Si and
Graphene512, where sbsize is relatively large (50), the number of iterations
taken by PPCG and Davidson are almost the same.

0 10 20 30 40 50 60 70 80

10
−2

10
0

10
2

Convergence of eigensolvers for Li318 (2,062 eigenpairs)

Time (sec.)

F
ro

b
e
n

iu
s
 n

o
rm

 o
f

th
e
 r

e
s

id
u

a
l

Davidson

PPCG

(a) Li318 (k = 2062)

0 20 40 60 80 100 120 140

10
−2

10
−1

10
0

10
1

Convergence of eigensolvers for Graphene512 (2,254 eigenpairs)

Time (sec.)

F
ro

b
e
n

iu
s
 n

o
rm

 o
f

th
e
 r

e
s
id

u
a
l

Davidson

PPCG

(b) Graphene512 (k = 2254)

0 50 100 150 200 250 300

10
−3

10
−2

10
−1

10
0

10
1

Convergence of eigensolvers for bulk Si (2,550 eigenpairs)

Time (sec.)

F
ro

b
e
n

iu
s
 n

o
rm

 o
f

th
e
 r

e
s
id

u
a
l

Davidson

PPCG

(c) bulk Si (k = 2550)

Figure 4: Convergence of the Davidson and PPCG algorithms for band structure calculation.

Figure 4 shows how the Frobenius norms of the subspace residuals change
with respect to the elapsed time for all three test problems reported in Ta-
ble 3. Note that at some point, both PPCG and the Davidson method start
to converge more rapidly. The change in convergence rate is the result of lock-
ing the converged eigenpairs, which significantly reduces computational cost in
performing AX.

In Tables 4 and 5, we provide a more detailed timing breakdown for both
PPCG and Davidson algorithms when they are used to solve Li318 and bulk
Si, respectively. We can clearly see that the wall clock time consumed by the
Davidson run is dominated by RR calculations. The RR cost is significantly
lower in PPCG. However, such a reduction in RR cost is slightly offset by the
additional cost of performing Cholesky QR, which we enable in each PPCG
iteration. Its cost represents roughly 15% of the total. As has been discussed in
Section 5.5, the number of these factorizations can, however, be further reduced,
which will lead to even more efficient PPCG.

We also note from Table 4 that PPCG may spend more time in performing
dense matrix–matrix multiplications (GEMM) required to orthogonalize W and
P against the current approximation to the desired invariant subspace than the
Davidson algorithm. We believe the relatively high cost of GEMM operations
is due to the 1D decomposition of the planewave coefficient matrix used in QE,

18

Computation PPCG Davidson

GEMM 16 11
AX 10 6
RR 13 66

CholQR 8 0

Table 4: Timing profiles (in seconds) for PPCG and Davidson when they are used to compute
the 2,062 lowest eigenpairs of the Li318 problem on 480 cores.

Computation PPCG Davidson

GEMM 27 41
AX 94 96
RR 40 191

CholQR 19 0

Table 5: Timing profiles (in seconds) for PPCG and Davidson when they are used to compute
the 2,550 lowest eigenpairs of the bulk Si problem on 2,400 cores.

which is less than optimal for machines with many processors. The performance
of GEMM depends on the size of the matrices being multiplied on each processor.
In the case of Li318, the dimension of the local distributed X is 720×2062, which
does not lead to optimal single-processor GEMM performance when X∗X or
similar matrix–matrix multiplications are computed. For bulk Si, the dimension
of the local distributed X is 2024× 2550, which is nearly a perfect square. The
optimized BLAS on Edison is highly efficient for matrices of this size.

It also appears that PPCG can spend more time in performing AX than
the Davidson method. The higher AX cost in PPCG can be attributed to its
delayed locking of converged eigenpairs. Because PPCG performs RR periodi-
cally, locking must also be performed periodically even though many eigenpairs
may have converged before the next RR procedure is called. Although we use
a constant RR frequency value rr period, it is possible to choose it dynamically.
In the first few PPCG iterations in which the number of converged eigenvectors
is expected to be low, we should not perform the RR procedure too frequently,
in order to reduce the RR cost. However, when a large number of eigenvectors
start to converge, it may be beneficial to perform the RR procedure more fre-
quently to lock the converged eigenvectors as soon as they appear, and hence
reduce the number of sparse matrix multiplications. In our tests, we observe
that setting rr period to a value between 5 and 10 typically yields satisfactory
performance.

In Figure 5, we demonstrate this finding by considering the effects of the RR
frequency on the convergence of PPCG in terms of iteration count (left) and
time (right) for the Li318 system. We can see that calling the RR procedure
periodically is crucial for reaching convergence. Completely removing the RR
calculation generally leads to a (near) stagnation of the algorithm. At the same

19

0 10 20 30 40 50

10
−2

10
0

10
2

PPCG convergence for different RR frequences (iterations)

Iteration number

F
ro

b
e
n

iu
s
 n

o
rm

 o
f

th
e
 r

e
s
id

u
a
l

no RR

rr_period = 1

rr_period = 5

rr_period = 10

rr_period = 15

0 20 40 60 80 100

10
−2

10
0

10
2

PPCG convergence for different RR frequences (time)

Time (sec.)

F
ro

b
e
n

iu
s
 n

o
rm

 o
f

th
e
 r

e
s
id

u
a
l

no RR

rr_period = 1

rr_period = 5

rr_period = 10

rr_period = 15

Figure 5: Effect of RR frequency on the convergence of PPCG for the Li318 problem.

time, it can be seen from Figure 5 (left), that performing the RR procedure too
frequently does not necessarily accelerate PPCG convergence. For this partic-
ular example, performing RR calculations every 15 iterations in fact results in
essentially the same convergence rate as that observed in another PPCG run in
which the RR computation is performed at every step.

The effect of the RR frequency becomes more clear when we examine the
change of residual norm with respect to the wall clock time. As shown in Figure 5
(right), the best rr period value for Li318 is 5, i.e., invoking the RR procedure
every five steps achieves a good balance between timely locking and reduction of
RR computations. As mentioned above, in principle, one can vary the rr period
values during the solution process. As a heuristic, rr period can be set to a
relatively large number in the first several iterations, and then be gradually
reduced to provide more opportunities for locking converged eigenvectors. We
tried such a strategy for Li318 but did not observe significant improvement.
Therefore, we leave rr period at 5 in all runs.

0 10 20 30 40 50 60

10
−2

10
0

10
2

PPCG convergence for different sbsize values (iterations)

Iteration number

F
ro

b
e
n

iu
s
 n

o
rm

 o
f

th
e
 r

e
s
id

u
a
l

sbsize = 1

sbsize = 5

sbsize = 10

sbsize = 50

sbsize = 100

0 10 20 30 40 50 60 70

10
−2

10
0

10
2

PPCG convergence for different sbsize values (time)

Time (sec.)

F
ro

b
e
n

iu
s
 n

o
rm

 o
f

th
e
 r

e
s
id

u
a
l

sbsize = 1

sbsize = 5

sbsize = 10

sbsize = 50

sbsize = 100

Figure 6: Effect of block size on the convergence of PPCG for the Li318 problem.

Figure 6 shows the effect of the block size sbsize on PPCG convergence for
the Li318 problem. One can see that increasing the sbsize value results in a
smaller number of iterations required to achieve the desired tolerance (Figure 6,

20

left). This behavior is expected, because in the limiting case where sbsize= k,
PPCG becomes the LOBPCG method, which optimizes in the full 3k × 3k
subspace in each iteration.

Figure 6 (right) demonstrates the effect of sbsize on the solution time. Re-
markably, a larger block size, which leads to a reduced iteration count, does not
necessarily result in better overall performance, even though it tends to reduce
outer iterations. This is in part due to the sequential implementation of the for
loop in step 11 in the current implementation. Since each block minimization in
the inner loop can take a non-negligible amount of time, the inner for loop can
take a significant amount of time, even though the loop count is reduced. On
the other hand, setting sbsize= 1 is not desirable either, because of that tends
to slow convergence and increase the outer PPCG iteration count. Furthermore,
the inner minimization cannot effectively take advantage of BLAS3 operations
in this case. For Li318, we observe that the best sbsize value is 5.

In Figure 7, we plot how the wall clock times of PPCG and Davidson change
with respect to the number of cores when applied to the Li318 and bulk Si
problems.

0 100 200 300 400 500 600 700 800
40

60

80

100

120

140

160

180

200

220
Scaling of eigensolvers for Li318 (2,062 eigenpairs)

T
im

e
 (

s
e
c
.)

Number of cpus

Davidson

PPCG

0 500 1000 1500 2000 2500 3000
150

200

250

300

350

400

450

500

550

600

650
Scaling of eigensolvers for bulk Si (2,550 eigenpairs)

T
im

e
 (

s
e
c
.)

Number of cpus

Davidson

PPCG

Figure 7: Scaling of the Davidson and PPCG algorithms when used to compute 2, 062 and
2, 550 bands of the converged Kohn-Sham Hamiltonian of the Li318 (left) and bulk Si (right)
systems, respectively.

We observe that both algorithms exhibit nearly perfect parallel scalability
when a relatively small number of cores are used in the computation. However,
as the number of cores increases, the performance of both algorithms stagnates.

A closer look at the timing profiles consisting of wall clock time used by
different computational kernels, as shown in Tables 6–9, reveals that the lack of
scalability at high core count is caused by the poor parallel scaling of both AX
and GEMM calculations at such core counts. A similar picture is observed for
other cases we have tested.

The less than satisfactory scalability of GEMM is likely due to the 1D parti-
tion of the planewave coefficients in QE. We are aware of a recent change in the
QE design to allow planewave coefficients to be distributed on a 2D processor
grid such as the one used in ABINIT [25, 26, 27] and Qbox [28]. However, the
new version of the code is still in the experimental stage at the time of this writ-

21

ncpus
Computation 48 96 192 384 480 768

GEMM 77 44 26 18 16 16
AX 33 28 17 13 10 11
RR 40 24 16 13 13 13

CholQR 28 16 9 8 8 9
Total 186 116 71 53 49 50

Table 6: Scaling of different computational components of PPCG for Li318.

ncpus
Computation 48 96 192 384 480 768

GEMM 54 29 17 12 11 11
AX 22 19 13 8 6 7
RR 370 170 105 77 66 66

Total 449 219 136 98 84 85

Table 7: Scaling of different computational components of the Davidson algorithm for Li318.

ncpus
Computation 200 400 800 1,600 2,400 2,800

GEMM 202 104 57 35 27 26
AX 247 165 129 106 94 92
RR 142 77 48 40 40 41

CholQR 66 91 21 18 19 21
Total 685 399 266 209 189 188

Table 8: Scaling of different computational components of PPCG for bulk Si.

ncpus
Computation 200 400 800 1,600 2,400 2,800

GEMM 248 138 76 47 41 38
AX 253 169 133 111 96 96
RR 474 303 214 189 191 189

Total 986 615 425 348 329 323

Table 9: Scaling of different computational components of Davidson’s algorithm for bulk Si.

22

ing. Hence we have not tried it. Once the new version of QE becomes available,
we believe the benefit of using PPCG to compute the desired eigenvectors will
become even more substantial.

The poor scalability of AX is due to the overhead related to the all-to-
all communication required in 3D FFTs. When a small number of cores are
used, this overhead is relatively insignificant due to the relatively large ratio
of computational work and communication volume. However, when a large
number of cores are used, the amount of computation performed on each core is
relatively low compared to the volume of communication. We believe that one
way to reduce such overhead is to perform each FFT on fewer than nz cores,
where nz is the number of FFT grid point in the third dimension. However,
this would require a substantial modification of the QE software.

6.2. SCF calculation

We ran both the block Davidson (Algorithm 1) and the new PPCG algorithm
to compute the solutions to the Kohn-Sham equations for the three systems list
in Table 1. To account for partial occupancy at finite temperature, we set
the number of bands to be computed to k = 886 for Li318; k = 1, 229 for
Graphene512; and k = 2, 000 for bulk Si.

In general, it is not necessary to solve the linear eigenvalue problem to high
accuracy in the first few SCF cycles because the Hamiltonian itself has not con-
verged. As the electron density and Hamiltonian converge to the ground state
solution, we should gradually demand higher accuracy in the solution to the lin-
ear eigenvalue problem. However, because the approximate invariant subspace
obtained in the previous SCF iteration can be used as a good starting guess
for the eigenvalue problem produced in the current SCF iteration, the num-
ber of Davidson iterations required to reach high accuracy does not necessarily
increase. The QE implementation of Davidson’s algorithm uses a heuristic to
dynamically adjust the convergence tolerance of the approximate eigenvalues as
the electron density and Hamiltonian converge to the ground-state solution. In
most cases, the average number of Davidson iterations taken in each SCF cycle
is around 2. We have not implemented the same heuristic for setting a dynamic
convergence tolerance partly because we do not always have approximate eigen-
values. To be comparable to the Davidson solver, we simply set the maximum
number of iterations allowed in PPCG to 2. In all our test cases, two PPCG
iterations were taken in each SCF cycle.

In Table 10, we report the overall time used in both the Davidson and
PPCG versions of the SCF iteration for all three test problems. The SCF
convergence tolerance is set to 10−6 for Li318 and bulk Si. It is set to 10−4 for
Graphene512 because the SCF iteration converges more slowly for this problem,
and hence takes much longer to run. We use the same (“plain”) mixing and
finite temperature smearing in both the Davidson and PPCG runs. Note that,
following the discussion in section 5.5, we omit the Cholesky QR step in PPCG
for the reported runs. Since only two eigensolver iterations are performed per
SCF iteration, this did not affect convergence and resulted in a speedup of the

23

Problem ncpus sbsize PPCG Davidson

Li318 480 5 35 (40) 85 (49)
Graphene512 576 10 103 (54) 202 (57)

bulk Si 2,000 5 218 (14) 322 (14)

Table 10: Comparison of total wall clock time (in seconds) used by PPCG and Davidson algo-
rithms to compute solutions of the Kohn-Sham equations. Numbers in parentheses correspond
to SCF iteration counts.

overall computation. The sbsize parameter has been set to 5 for the Li318 and
bulk Si systems, and to 10 for Graphene512.

10 20 30 40 50 60 70 80
10

−6

10
−4

10
−2

10
0

10
2

Convergence of the SCF iteration for Li318

E
s
ti

m
a
te

d
 s

c
f

a
c
c
u

ra
c
y

Time (sec.)

Davidson

PPCG

PPCG (no CholQR)

(a) Li318

50 100 150 200

10
−4

10
−2

10
0

10
2

Convergence of the SCF iteration for Graphene512

E
s
ti

m
a
te

d
 s

c
f

a
c
c
u

ra
c
y

Time (sec.)

Davidson

PPCG

PPCG (no CholQR)

(b) Graphene512

50 100 150 200 250 300
10

−6

10
−4

10
−2

10
0

Convergence of the SCF iteration for bulk Si

E
s
ti

m
a
te

d
 s

c
f

a
c
c
u

ra
c
y

Time (sec.)

Davidson

PPCG

PPCG (no CholQR)

(c) bulk Si

Figure 8: Convergence of the SCF iteration with Davidson and PPCG algorithms.

The convergence curves corresponding to the SCF runs of Table 10 are shown
in Figure 8. We can clearly see that the PPCG based SCF iteration can be nearly
twice as fast as the Davidson based iteration. The figure also demonstrates the
effects of skipping the Cholesky QR step, which further reduces the PPCG run
time. It appears that, for the Li318 and Graphene512 examples, a slightly fewer
number of SCF iterations is needed to reach convergence when PPCG is used
to solve the linear eigenvalue problem in each step.

In Figure 9, we compare scalability of the SCF iteration based on the PPCG
(without Cholesky QR) and Davidson algorithms. We report the results for
Li318 (left) and bulk Si (right). Similar to the case of the band structure
calculations, both schemes scale approximately up to the same number of cores
for Li318, whereas scalability of PPCG is slightly better for the bulk Si example.

7. Conclusions

We presented a projected preconditioned conjugate gradient (PPCG) algo-
rithm for computing an invariant subspace associated with the smallest eigen-
values of a large Hermitian matrix. The key feature of the new algorithm is that
it performs fewer Rayleigh-Ritz computations, which are often the bottleneck in
iterative eigensolvers when the number of required eigenpairs is relatively large
(e.g., over thousands). We discussed a number of practical issues that must be
addressed in order to implement the algorithm efficiently.

24

0 100 200 300 400 500 600 700 800
20

40

60

80

100

120

140

160

180
Scaling of the SCF computations for Li318

T
im

e
 (

s
e
c
.)

Number of cpus

Davidson

PPCG

0 500 1000 1500 2000 2500 3000
200

300

400

500

600

700

800

900
Scaling of the SCF computations for bulk Si

T
im

e
 (

s
e
c
.)

Number of cpus

Davidson

PPCG

Figure 9: Scaling of SCF iterations with the Davidson and PPCG algorithms for Li318 (left)
and bulk Si (right) systems.

We implemented the PPCG algorithm within the widely used Quantum
Espresso (QE) planewave pseudopotential electronic structure software package.
We demonstrated that PPCG is nearly two times faster than the existing state-
of-the-art Davidson algorithm implemented in QE for a number of test problems.
We believe further performance gains can be achieved in PPCG relative to other
algorithms if the multiplication of A with a block of vectors X and the dense
matrix multiplications such as X∗X are implemented in a scalable fashion.

Acknowledgments.. The authors thank Dr. Erik Draeger at the Lawrence Liv-
ermore National Laboratory for insightful comments and discussions.

Appendix A. Detailed description of the PPCG algorithm

In this appendix, we summarize the practical aspects related to implemen-
tation of PPCG, discussed in Section 5, in Algorithm 3. Note that if storage
for AX, AW , and AP is available, then the method can be implemented using
one matrix–block multiplication and one block preconditioning operation per
iteration. If only an invariant subspace is needed on output, then the last step
of the algorithm can be omitted.

25

 Prepared by LLNL under Contract DE-AC52-07NA27344.

Algorithm 3: The PPCG algorithm (detailed description of Algorithm 2)

Input: The matrix A, a preconditioner T , a starting guess of the invariant
subspace X(0) ∈ Cn×k associated with the k smallest eigenvalues of A,
X(0)∗X(0) = I, parameter rr period to control the RR frequency, the
splitting parameter sbsize, and the number nbuf of buffer vectors;

Output: Approximate eigenvectors X ∈ Cn×k associated with the k smallest
eigenvalues Λ of A;

1: X ← X(0); Xlock ← []; P ← []; iter← 1;
2: Add nbuf buffer vectors to X, k ← k+nbuf ; kact ← k;
3: Initialize index sets J = {1, . . . , k} and Jlock ← [];
4: Compute the initial subspace residual W ← AX −X(X∗AX);
5: Use sbsize to determine the number s of subblocksa.
6: Define the splitting X = [X1, . . . , Xs] and W = [W1, . . . , Ws].
7: while convergence not reached do
8: W ← TW ;
9: W ← (I −XX∗)W and W ← (I −XlockX

∗
lock)W ;

10: P ← (I −XX∗)P and P ← (I −XlockX
∗
lock)P ;

11: for j = 1, . . . , s do
12: S ← [Xj ,Wj , Pj] (Pj = 0 if P = []);
13: Find eigenvectors C = [CX , CW , CP]T (CP = 0 if P = []) associated with the

k smallest eigenvalues Ω of (3);
14: Pj ←WjCW + PjCP ;
15: Xj ← XjCX + Pj ;
16: end for
17: if mod(iter, rr period) 6= 0 then
18: Compute Cholesky factorization X∗X = R∗R;
19: X ← XR−1;b

20: W ← AX −X(X∗AX);
21: else
22: Set S = [X, Xlock];
23: Find eigenvectors C associated with the k smallest eigenvalues Ω of (3);
24: X ← SC; Λ← Ω;
25: W ← AX −XΛ;
26: Use W to determine column indices Jlock of X that correspond to converged

eigenpairs; define the indices of active columns Jact ← J \ Jlock;
27: Xlock ← X(Jlock);
28: X ← X(Jact); W ←W (Jact); P ← P (Jact);
29: Set kact to the number of active columns;
30: Compute the number s of subblocks for splitting the active columns (similar to

step 5);
31: Define the splitting of active columns X = [X1, . . . , Xs], W = [W1, . . . , Ws],

and P = [P1, . . . , Ps].
32: end if
33: iter← iter + 1;
34: end while
35: Perform steps 22-24 to obtain final eigenpair approximations (X,Λ).

as = kact/sbsize if the remainder of the division is 0. Otherwise, s = kact/sbsize +1.
bSteps 18 and 19 can be periodically omitted to gain further efficiency.

26

References

[1] Y. Saad, Numerical Methods for Large Eigenvalue Problems- classics edi-
tion, SIAM, Philadelpha, PA, 2011.

[2] E. R. Davidson, The iterative calculation of a few of the lowest eigenval-
ues and corresponding eigenvectors of large real symmetric matrices, J..
Comput. Phys. 17 (1) (1975) 87–94.

[3] A. Knyazev, Toward the optimal preconditioned eigensolver: Locally Opti-
mal Block Preconditioned Conjugate Gradient method, SIAM J. Sci. Com-
put. 23 (2) (2001) 517–541.

[4] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,
R. C. Whaley, ScaLAPACK Users’ Guide, Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, 1997.

[5] G. Schofield, J. R. Chelikowsky, Y. Saad, A spectrum slicing method for
the KohnSham problem, Comput. Phys. Commun. 183 (3) (2012) 497–505.

[6] Z. Wen, C. Yang, X. Liu, Y. Zhang, Trace penalty minimization for large-
scale eigenspace computation, Tech. Rep. 13-03, Rice University, submitted
to J. Sci. Comp. (2013).

[7] W. J. Stewart, A. Jennings, A simultaneous iteration algorithm for real
matrices, ACM Trans. Math Softw. (TOMS) 7 (1981) 184–198.

[8] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavaz-
zoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal
Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerst-
mann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari,
F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbrac-
cia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari,
R. M. Wentzcovitch, Quantum espresso: a modular and open-source soft-
ware project for quantum simulations of materials, Journal of Physics: Con-
densed Matter 21 (39) (2009) 395502 (19pp).
URL http://www.quantum-espresso.org

[9] A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler,
A. Heinecke, H.-J. Bungartz, H. Lederer, The ELPA library: scalable par-
allel eigenvalue solutions for electronic structure theory and computational
science, J. Phys.: Condens. Matter 26 (21) (2014) 213201.

[10] J. Poulson, B. Marker, R. van de Geijn, J. Hammond, N. Romero, Elemen-
tal: A new framework for distributed memory dense matrix computations,
ACM Trans. Math. Softw. 39 (2) (2013) 13:1–13:24.

[11] A. Sameh, J. A. Wisniewski, A trace minimization algorithm for the gen-
eralized eigenvalue problem, SIAM J. Numer. Anal. 19 (1982) 1243–1259.

27

http://www.quantum-espresso.org
http://www.quantum-espresso.org
http://www.quantum-espresso.org

[12] A. Sameh, Z. Tong, The trace minimization method for symmetric gener-
alized eigenvalue problem, Journal of Computational and Applied Mathe-
matics 123 (2000) 155–175.

[13] R. T. Haftka, Z. Gürdal, Elements of Structural Optimization, 3rd Edition,
Kluwer Academic Publishers, 1992.

[14] J. Nocedal, S. Wright, Numerical Optimization, Springer Series in Opera-
tions Research, Springer, 1999.

[15] B. T. Polyak, Introduction to Optimization, Translations Series in Mathe-
matics and Engineering, Optimization Software, 1987.

[16] E. S. Levitin, B. T. Polyak, Constrained minimization methods, Zh. Vy-
chisl. Mat. Mat. Fiz. 6 (5) (1966) 1–50.

[17] A. A. Goldstein, Convex programming in Hibert space, Bull. Amer. Math.
Soc. 70 (1964) 709–710.

[18] J. B. Rosen, The gradient projection method for nonlinear programming.
Part i. Linear constraints, J. Soc. Indust. Appl. Math. 8 (1) (1960) 181–217.

[19] J. B. Rosen, The gradient projection method for nonlinear programming.
Part ii. Nonlinear constraints, J. Soc. Indust. Appl. Math. 9 (4) (1961)
514–532.

[20] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136
(1964) B864–B871.

[21] W. Kohn, L. Sham, Self-consistent equations including exchange and cor-
relation effects, Phys. Rev. 140 (1965) A1133–A1138.

[22] A. V. Knyazev, M. E. Argentati, I. Lashuk, E. E. Ovtchinnikov, Block
locally optimal preconditioned eigenvalue xolvers (BLOPEX) in hypre and
PETSc, SIAM Journal on Scientific Computing 25 (5) (2007) 2224–2239.

[23] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press,
New York, 1985.

[24] K. Fan, A. J. Hoffman, Some metric inequalities in the space of matrices,
Proc. Amer. Math. Soc. 6 (1955) 111–116.

[25] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin,
P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch,
L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D. Hamann, P. Her-
met, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. Oliveira,
G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
M. Torrent, M. Verstraete, G. Zerah, J. Zwanziger, ABINIT:First-principles
approach of materials and nanosystem properties, Computer Phys. Com-
mun. 180 (2009) 2582–2615.

28

[26] X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon,
R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, P. Ghosez, M. Vei-
then, J.-Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida,
D. Hamann, D. Allan, A brief introduction to the ABINIT software pack-
age, Allan. Zeit. Kristallogr. 220 (2005) 558–562.

[27] F. Bottin, G. Z. S. Leroux, A. Knyazev, Large scale ab initio calculations
based on three levels of parallelization, Computational Material Science
42 (2) (2008) 329–336.

[28] F. Gygi, Architecture of Qbox: a scalable first-principles molecular dy-
namics code, IBM Journal of Research and Development 52 (1/2) (2008)
137–144.

29

