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1. Introduction 
 

 There are two primary sources of naphthalene (NA) exposure to military personnel and to 
their families:  the use of JP-8 as a common fuel for both aircraft and transport vehicles and 
mainstream and sidestream tobacco smoke.  Jet fuels contain 1-3% naphthalene by weight, DoD 
uses an estimated 5.5 billion gallons of JP-8 annually.  Naphthalene is the single most prevalent 
aromatic hydrocarbon in second hand smoke exceeding the levels of polycylic aromatic 
hydrocarbons like benzo(a)pyrene (BaP) nearly 250 fold (Witschi et al, Carcinogenesis 18, 2035, 
1997). The EPA has listed NA as a probable human carcinogen based on the results of the cancer 
bioassay conducted in both mice and rats. However, there are many groups arguing that NA-
induced respiratory tumors in rodents are not relevant to estimating the risks to exposed human 
populations (see Piccirillo et al, Regul Toxicol Pharmacol. 62: 433, 2012) based on the much 
slower rates of microsomal NA metabolism in primate compared to rodent respiratory tissue, on 
the finding that NA is not mutagenic in most in vitro short term assays and on epidemiologic 
data showing that nasal tumors in humans are very rare.  This work is intended to provide solid 
evidence for or against a clastogenic mechanism of action for NA in rodent and non-human 
primate respiratory tissues.  Determining the ability of fresh non-human primate tissues to 
generate NA metabolites that bind to DNA using ultrasensitive and highly specific assays would 
provide a mechanistic basis for assessing the risks of NA exposure.  If these studies demonstrate 
binding of metabolites generated in primate tissues to DNA, either removal of NA from fuel 
sources or additional engineering controls could be established to further protect personnel. 
 
 2. Keywords 
 
 naphthalene, DNA adducts, clastogen, metabolite 
 
 3. Overall Project Summary 
 
 All IACUC and ACURO approvals were obtained quickly at the start of project and the 
subcontract between LLNL and UC Davis (UCD) was executed at the start of December 2014.  
During the reporting period all the rodent exposures were completed.  Rhesus monkey exposures 
on animals culled from the colony at the UCD California National Primate Research Center 
(CNPRC) need to be conducted during the fall of 2015.  
 As proposed, all in vitro exposures were conducted using fresh micro-dissected tissues 
obtained at UCD as described in Van Winkle et al (1996).  Tissues were incubated with 2.5, 25, 
or 250 µM 14C-NA, 25 or 50 µM 14C-benzo(a)pyrene (BaP), or unlabeled sham controls.  The 
groups were treated with NA at 250 and 2.5 µM to test the upper and lower limits of exposure 
based on John Morris’ published (2012) calculations of an upper limit for delivered dose at 250 
µM as equivalent to the 10 ppm OSHA exposure limit for NA. Tissues were incubated for 60 
minutes followed by 12-15 rinses with ethanol to remove unbound NA or BaP. Tissues were 
rinsed until the rinse no longer had excess 14C.  DNA was isolated from tissues  with Qiagen 
DNeasy kits according to the manufacturer protocols with modification.  Two proteinase K 
digestions were done to assure complete removal of protein. DNA purity was assessed using UV 
absorbance at 260/280 nm. DNA samples were then prepared for graphitic carbon 14C-AMS 
analyses using standard procedures (Ognibene et al, 2003; Ognibene et al, 2015a).  The NA-
DNA adduct levels are depicted in Figures 1-5. 
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Figure 1. Adducts of BaP or NA per genome in mouse airway. Six replicates were prepared for 
each dose group with one sample failure at the 250 µM NA and two sample failures at the 2.5 
µM NA dose. The average is shown for each dose group. 
 

  
Figure 2. Adducts of BaP and NA per genome in rat airway. Six replicates were prepared and the 
average is shown for each dose group.  
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Figure 3. Adducts of BaP and NA per genome in rat olfactory tissue. Six replicates were 
prepared for each dose group with one sample failure at each the 25 µM BaP and the 2.5 µM NA 
dose. The average is shown for each dose group. 
 

 
Figure 4. Adducts of BaP and NA per genome in rat respiratory tissue. Six replicates were 
prepared and the average is shown for each dose group.  
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Figure 5. Adducts of BaP and NA per genome in rhesus monkey respiratory tissue. Error bars 
denote 1 standard deviation uncertainty in measurement.  
 
 Based on the National Toxicology Program (NTP) carcinogenesis bioassays (North et al, 
2008), we expected to see the highest level of NA-DNA adducts correspond to the recorded 
cancer sites following NA exposures: bronchiolar alveolar carcinomas in the airways of female 
mice and neuroblastomas in the nasal epithelium of rats.  Instead, we found the highest measured 
frequency of NA-DNA adducts in mouse airway, followed by rat airway.  Rat olfactory tissue 
had low levels of adducts similar to rat respiratory tissue.  Rat airway did not develop tumors in 
the NTP bioassay (North et al, 2008).  The limited number of monkey airway tissues exposed 
indicated that NA-DNA adducts formed at a rate lower than B(a)P-DNA adducts. Our 
experiments did not examine adduct stability, only whether adducts formed upon exposure.  
 
DNA Adduct Identification 
 The experiments aimed at determining which DNA bases were adducted by specific NA 
metabolites were more difficult to complete than anticipated.  Producing adducted nucleosides of 
NA metabolites was impeded by the inability to obtain all the reactive NA metabolites.  Our 
original plan was to perform in vitro exposures and purify DNA as described above, followed by 
DNA digestion and HPLC separation of adducted bases followed by AMS analyses of collected 
fractions (Buchholz et al, 1999).  Adducted based would be identified by co-chromatography 
with synthetic standards.   During the summer of 2015 LLNL acquired a Waters Xevo G2 XS 
QTOF instrument for qualitative and quantitative sample analysis that has been installed with the 
new liquid sample AMS interface ((Ognibene et al, 2015b). The QTOF enables accurate mass 
analyses for a variety of analytical applications, including metabolite profiling, identification, 
characterization, and quantification of both small and macromolecules. The QTOF is coupled to 
a Waters Acquity H Class HPLC system used to separate samples for introduction to the liquid 
sample AMS interface.  A flow splitter is configured such that eluent from the HPLC flows to 
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the QTOF for qualitative and quantitative analysis, and to the AMS instrument for isotope ratio 
measurement.  Mass spectra are aligned based on retention times to match AMS results to mass 
spectrometric analytes. Coupling QTOF and AMS measurements in this way constitutes a 
powerful improvement to our analytical capabilities since molecular ion mass identifies the 
analyte and AMS quantifies the adduct level.   
 
DNA Digestion Procedure:  DNA concentration was measured using a NanoDrop instrument.  
Digestion was performed following the procedure reported by Quinlivan and Gregory (2008).  
Digestion buffer was prepared by adding 200 U benzonase, 200 U alkaline phosphatase, and 300 
mU phosphodiesterase I to 5 mL of 20 mM Tris-HCl with 100 mM NaCl and 20 mM MgCl2, pH 
7.9.  Briefly, 2 micrograms of DNA (at a concentration of 40 ng/µL) were digested by addition 
of an equal volume (50 µL) of digestion buffer and incubation at 37° C for 6 hours.   
 
LC-MS-AMS Procedure:  DNA digests were initially analyzed by separation on a Waters 
Acquity H Class HPLC system with a Phenomenex Luna-2 C18 column, 250 x 4.6 mm, 5 µm 
particle size.  The injection volume was 10 µL.  The column temperature was 30° C.  Mobile 
phase A was water with 0.1% formic acid, and mobile phase B was acetonitrile with 0.1% formic 
acid.  A gradient elution was performed over 35 minutes as follows: Initial composition, 10% B; 
1 minute, 10% B; 20 minutes, 60% B; 25 minutes, 100% B; 30 minutes, 100% B; 30.1 minutes, 
10% B; 35 minutes; 10% B.  The flow rate was 0.6 mL/minute, with flow split between the AMS 
moving wire interface (approximately 100 µL/min) and a Waters Xevo G2-XS mass 
spectrometer (500 µL/min).  Detection was accomplished by AMS, UV detection at 254 nm, and 
positive mode electrospray ionization in resolution mode.   
 
LC-AMS Procedure:  Due to initial low detection of Carbon-14 signal, a smaller column was 
used to enable the analysis of the entire HPLC effluent by AMS without flow splitting.  No mass 
spectral data was collected.  Mobile phases, injection volume, column temperature, and UV 
detection were the same as the LC-MS-AMS procedure.  The column was a Waters Atlantis T3 
2.1 x 50 mm column with 5 µm particle size.  The flow rate was 100 µL/min and the run time 
was 40 minutes.  The gradient was as follows: Initial, 10% B; 1 minute, 10% B; 20 minutes, 60% 
B; 25 minutes, 100% B; 30 minutes, 100% B; 30.1 minutes, 10% B; 40 minutes, 10% B. 
 
Results:  Specific adducts were not identified, but carbon-14 signal indicates that it may be 
possible to measure and identify specific adducts with additional method development in 
samples containing sufficient material to detect by both AMS and mass spectrometry.  Detection 
of adducts was limited by low carbon-14 signal and inadequate detection by mass spectrometry.  
Mass spectrometric detection and identification could be enhanced by optimization of flow split 
ratio and of detection parameters.  Optimization of DNA digestion could also improve adduct 
detection.  Figure 6 shows chromatographic separation with flow splitting of undigested (upper 
panel) and digested DNA (lower panel).  Deoxyribonucleosides were not definitively identified, 
but based on peak retention times, probable peak identification is as follows: 1, Deoxycytidine; 
2, Deoxyguanosine; 3, Thymidine; and 4, Deoxyadenosine.  Figure 7 shows a chromatogram 
overlay of digested DNA analyzed by LC-AMS on a 50 mm column without flow splitting.  
Deoxynucleosides elute earlier on the 50 mm column than on the 250 mm column.  The bulk of 
the carbon-14 signal elutes later than unmodified deoxynucleosides, which is indicative of 
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naphthalene adducts or incomplete digestion.  Additional method development with adequate 
sample quantities could enable definitive identification of these putative adducts. 
 

 
 
Figure 6. HPLC chromatograms of undigested and digested DNA. 
 

Naphthalene Adducts by LC-AMS
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Figure 7. Overlay of HPLC (254 nm) and AMS chromatograms for digested DNA analyzed by 
LC-AMS on a 50 mm column. 
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 4. Key Research Accomplishments 
 The key research accomplishments from the quantitation of NA-DNA adducts in mouse, rat, 
and monkey tissues are the following: 
 

• Naphthalene incubations form DNA adducts in a dose dependent manner in both mouse 
and rat tissues 

• Rodent tissue incubations with naphthalene indicate that naphthalene forms as many 
DNA adducts as Benzo(a)pyrene, a known DNA binding carcinogen, acutely. 

• The mouse airway has the greatest number of DNA adducts, corresponding to the higher 
metabolic activation of naphthalene in this location. 

• Both rat tissues, the rat olfactory (tumor target) and the airways (non-tumor target), have 
similar levels of NA-DNA adducts, indicating that short term measures of initial adduct 
formation do not directly correlate with sites of tumor formation in the NTP bioassays.   

• NA-DNA adducts are formed in rhesus monkey airway at levels slightly below that of 
B(a)P adducts. 

• NA-DNA adducts survive the DNA digest procedure used the low levels of 14C 
 
 5. Conclusion 
 The NTP bioassays following NA exposure produced neuroblastomas in the nasal epithelium 
of rats while rat airways did not grow tumors.  If the number of initial NA-DNA adducts was the 
single key event in determining tumor formation at these sites we would expect more adducts in 
the rat olfactory epithelium than in the rat airway.  However, our data indicates slightly higher 
formation of adducts  in rat airway than rat olfactory tissues.  Our experiments quantified NA-
DNA adduct formation, but did not assess adduct stability. The lack of tumors in the rat airway 
of the NTP bioassays suggests the adducts we measured are not stable in the long term and are 
cleared shortly after formation.  Furthermore, the high level of NA-DNA adducts we measured in 
mouse airway were 60-300x that measured in rat tissues at the 250 µM exposure.  Yet, the NTP 
bioassays found rat nasal tumors more prevalent that mouse airway tumors.  It appears as though 
the airway tissues clear a significant amount of NA-DNA adducts in vivo.  The rhesus monkey 
tissue exposures indicated that NA-DNA adducts form at rates similar to B(a)P.  When 
attempting to identify specific adducts, the bulk of the carbon-14 signal elutes later than 
unmodified deoxynucleosides, which is indicative of naphthalene adducts or incomplete 
digestion.  Additional method development with adequate sample quantities could enable 
definitive identification of these putative adducts. The limited results from attempts to identify 
the specific DNA adducts of NA or its metabolites indicate the need of significant effort required 
for the development of a robust protocol.   
 
 6.   Publications, Abstracts, & Presentations 
 An abstract was published and poster presented at the Society of Toxicology Meeting in 
spring 2016. The title of the presentation was “Naphthalene DNA Adduct Formation in Ex-Vivo 
Rodent Tissue.”  A paper is in preparation and planned to be submitted near September 2016. 
 
 7. Inventions, Patents, & Licenses 
 None. 
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 8. Reportable Outcomes 
 NA-DNA adducts were detected after ex-vivo exposure in target tissues of three different 
species, mouse, rat and monkey. Additional work needs to be done to assess the stability of the 
adducts and specific identification of the adducts formed. 
 
 9.  Other Achievements 
 None.   
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Naphthalene DNA Adduct Formation in Ex-Vivo Rodent Tissues 
 
Sarah A. Carratt, Bruce A. Buchholz, Xinxin Ding, Laura S. Van Winkle 
 
Naphthalene (NA) is a respiratory toxicant and possible human carcinogen. Human 
epidemiology data are unclear on the long-term effects of NA exposure and risk 
assessment relies heavily on animal data. Recurrent cycles of cytotoxicity and 
proliferation are thought to be the driving force behind formation of mouse lung tumors 
and rat nasal tumors; however, the formation of DNA adducts from NA metabolites has 
not been ruled out and could impact the decision to evaluate NA as a genotoxic agent. 
This study evaluated DNA adduct formation in target tissues for carcinogenesis in the 
National Toxicology Program’s chronic bioassays: female mouse airway epithelium and 
male rat nasal epithelium (respiratory, olfactory). Metabolically active epithelial tissue 
was isolated and incubated in explant culture with 14C-labeled NA (0, 2.5, 25, 250 uM) 
for 1 h. The tissue was then rinsed 12-15 times to remove unbound NA; DNA was 
isolated and prepared for 14C-AMS (accelerator mass spectrometry) analyses. Male rat 
airway, which is not susceptible to tumor formation by NA, was used as a negative 
control. Benzo(a)pyrene (25 uM), a known carcinogen and DNA adductor, was the 
positive control. We found the highest level of ex vivo formed NA-DNA adducts in 
mouse airway, followed by rat airway and nasal olfactory tissue, in a manner 
corresponding with the previously reported, differing rates of in vitro NA bioactivation at 
these sites. We conclude that NA is capable of forming DNA adducts in target tissues of 
NA carcinogenesis in mice and rats.  Future experiments will determine adduct structure 
and examine adduct stability, both properties may impact the carcinogenic potential of 
the detected DNA adducts. (Funded by T32 ES007059, R01 ES020867, ES020867S1 
and DOD LC130820) This work performed in part under the auspices of the U.S. 
Department of Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344. 
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