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The impacts of the electromagnetic effects on blob dynamics are considered. Electromagnetic BOUT++
simulations on seeded high-beta blobs demonstrate that inhomogeneity of magnetic curvature or plasma
pressure along the filament leads to bending of the blob filaments and the magnetic field lines due to increased
propagation time of plasma current (Alfvén time). The bending motion can enhance heat exchange between
the plasma facing materials and the inner SOL region. The effects of sheath boundary conditions on the part
of the blob away from the boundary are also diminished by the increased Alfvén time. Using linear analysis
and the BOUT++ simulation, it is found that electromagnetic effects in high temperature and high density
plasmas reduce the growth rate of resistive drift wave turbulence when resistivity drops below some certain
value. In the course of blobs motion in the SOL its temperature is reduced, which leads to enhancement of
resistive effects, so the blob can switch from electromagnetic to electrostatic regime, where resistive drift wave
turbulence become important.

PACS numbers: 52.25.Fi, 52.35.Kt, 52.35.Ra, 52.40.Kh

I. INTRODUCTION

Plasma blobs (filamentary structures extended along
the magnetic field lines) are meso-scale turbulent struc-
tures usually observed in the scrape-off layer (SOL) of
magnetic confinement devices. They are characterized
by it’s convective behavior propagating with velocity Vb

reaching several percent of sound speed. Typical blob size
is ∼ 1 − 3 cm and plasma density in the blob is signifi-
cantly higher than that of ambient plasma. In tokamaks
blobs appear on the outer side of the torus.
Blobs, which are inherent part of edge plasma turbu-

lence and transport, controlling plasma-wall interactions,
have been extensively studied in last decade. Compre-
hensive reviews on blobs can be found in Ref. 1 and Ref.
2. The basic theory of blob physics was introduced in
Ref. 3. The charge separation caused by effective grav-
ity (caused by curvature and grad(B) effects) results in a
radial E×B convection of plasma. The blob dynamics is
sensitive to the interplay between cross field polarization
current and the current along the field lines which is the
subject of various closures1. Recent study of the impact
of plasma instabilities on blob dynamics show that the
coherency of the blob can be substantially limited by the
onset of the resistive drift wave instability resulting in
blobs dispersion4. However only electrostatic limit was
considered in Ref. 4.
The impact of particle and heat transported by blobs

on plasma-facing components become more significant
as the pressure of plasma in the blobs increases. These
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large-pressure blobs can be formed by the edge localized
mode (ELM) crashes or by turbulent activities in the
SOL of large confinement machines. In the case of the
increased plasma beta (β̃ ≡ βMi/me > 1, β = 8πnT/B2)
the electromagnetic effects become important. Theoreti-
cal work on such electromagnetic blob regimes and their
effects on the blob dynamics can be found in Refs. 1, 5–8.
Although some electromagnetic turbulent simulations9,10

on tokamak SOL also have been performed, there has
been virtually no attention to the electromagnetic effects
on high-β blob dynamics.
In this paper, we present the result of our studies of

the electromagnetic effects on the seeded high-β blob dy-
namics and stability with BOUT++ framework11,12. In
addition, we supplement our numerical simulations with
analytic estimates of blob stability in electromagnetic
regime.
The paper is organized as follows: In Section II we

present equations we use to describe blob dynamics and
stability in electromagnetic regime; In Section III we con-
sider an impact of electromagnetic effects on macroscopic
blob dynamics; In Section IV we analyze influence of elec-
tromagnetic effects on resistive drift wave instability of
blob’s plasma; In Section V we discuss our results and in
Section VI we summaries our main conclusions.

II. GOVERNING EQUATIONS, INITIAL AND

BOUNDARY CONDITIONS

A. Governing equations

We consider blob’s plasma dynamics using fluid ap-
proximation and a three-dimensional Cartesian geome-
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try with z-coordinate aligned to magnetic field, B, and
x-, y-coordinate corresponds to the radial and effective
poloidal direction respectively. Essential physics of blob
dynamics can be simplified to isothermal electron dynam-
ics and ignoring ion parallel motion and ion temperature
effects4.
Using the Boussinesq approximation, gives reason-

ably accurate results13, we have the following set of
equations11,12
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where n is the plasma density, φ is the electrostatic po-
tential, Te, me and−e are the electron temperature, mass
and charge respectively, ρs = cs/Ωi is gyro-Bohm radius,
cs = (Te/Mi)

1/2 is ion sound speed, Ωi is the ion gyro-
frequency, Mi is ion mass, g = 2c2s/R is the effective grav-
itational acceleration representing polarization drive due
to the magnetic curvature and grad(B) effects, R is the

tokamak major radius, σ‖ ∝ T
3/2
e is the plasma electric

conductivity along the magnetic field, the derivative op-

erators are defined as d/(dt) = ∂/(∂t)+(c/B)b̂0×∇φ ·∇

and∇‖ = ∂/(∂z)+(∇A‖/B0)×b̂0 ·∇, and where b̂0 is the
unit vector along the unperturbed magnetic field, Aj‖ is
defined as summation of the parallel component of vector
potential and an electron inertia term,

Aj‖ ≡ −
eA‖

mec
−

J‖

ne
, (4)

where c is the speed of light. The parallel vector potential
A‖ is calculated by the inversion of following relation,

J‖ = −
c

4π
∇2

⊥A‖. (5)

Equations (1-5) provide three coupled equations for φ,
n and Aj‖ governing the electromagnetic blob dynamics

B. Initial and boundary conditions

Solving the given system of Eqs. (1-5), requires bound-
ary and initial conditions of all variables. Following Refs.
4 and 14 we consider initial plasma density as a homoge-
neous background and with a bump on it, n = n0+ ñ(x),
with ñ(r) = ñb exp [−((x− x0)

2 + (y − y0)
2)/δ2], where

(x0, y0) is the initial location of blob’s center of mass
in transverse plane and δ is a characteristic blob radius.
We take zero of all other variables at the beginning of
the simulations.
The conditions of electric potential, density and cur-

rent density at the domain boundary along the mag-
netic field lines play important roles in blob dynam-
ics. We apply Neumann conditions at the upper (+)

and the lower (−) boundaries in z-directions for den-
sity, ∂n/(∂z)|± = 0. The sheath limited boundary con-
dition for electric potential can be one possible choice
because parallel magnetic fields end at a material sur-
face in an open magnetic configuration such as the SOL.
Given the condition we have current limit through the
sheath boundary in z-direction,

Jsh± = ±
cse

2

Te
n±φ±, (6)

where n± and φ± are the density and the electric poten-
tial at the upper and the lower sheath boundaries, respec-
tively. Assuming field line bending is small at the sheath
boundary region, the current density near the sheath re-
gion is represented as

J‖± = σ‖
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Matching current density of Eq. (6) with that of Eq.
(7), we determine the sheath limited boundary condition
for electric potential. We use constant gradient condi-
tions at the sheath boundaries for parallel current, i.e.
∂j‖/(∂z)|sh± = ∂J‖/(∂z)|± assuming continuous polar-
ization.
It is worthwhile noting here that the boundary condi-

tions of high-β filaments may not have the sheath limited
condition. In other words, the physical locations of the
longitudinal terminal points of the filaments can be actu-
ally inside the separatrix not on the material surfaces2.
In this case determining exact boundary conditions along
the field line is difficult because the conditions are to be
coupled to the plasma parameters near the interface be-
tween the core and edge region.
Therefore, in addition to the sheath limited boundary

condition that describes the parallel interface between
a filament and material surface, we can also consider a
simple boundary condition that disconnects the filament
from the surface. This free boundary condition is given
as Neumann condition on electric potential and density,
∂φ/(∂z)|± = ∂n/(∂z)|± = 0, and a Dirichlet boundary
condition on the parallel current density, J‖|± = 0. The
situation where J‖|± is zero corresponds roughly to the
case where the filament is located near the X-point of
magnetic topology in magnetic confinement devices. In-
creasing effective resistivity in the X-point region hinders
parallel currents and the filament regime is electrically
disconnected from the sheath boundary and approaches
the resistive ballooning regime2,6.

III. ELECTROMAGNETIC EFFECTS ON BLOB

PROPAGATION

A. Electromagnetic effects and sheath boundary condition

As stated in section I, blob dynamics is determined by
the dipole potential resulted from the balance between
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perpendicular polarizing current and parallel current.
Therefore, boundary conditions for the parallel current
become an important factor in blob dynamics. In electro-
static approximations, boundary conditions (e.g. sheath
limited conditions) have immediate effects on blob dy-
namics throughout the whole filamentary length, whereas
in electromagnetic calculations the boundary effects are
minimized by retarded Alfvén speed at high-β plasmas.

For the purpose of comparing boundary effects on elec-
tromagnetic and electrostatic high-β blobs, we perform
3D simulation using BOUT++ code11,12. Considering
an ITER relevant machine, the radius of curvature and
the connection length are set to R ∼ 6 m and L ∼ 100 m
respectively. As an initial condition we seed a blob with
a Gaussian function n/n0 = 1 + 2 exp[−(x2 + y2)/δ2].

The plasma is considered to have high-β as β̃ ∼ 3 for
Te = 200 eV, n0 = 1 × 1014 cm−3 and B = 5.3 T. Note
that these plasma parameters are somewhat higher than
that of predictions made by two dimensional modeling
on core-edge plasma for the ITER machine15. The pa-
rameters for the high-β filament corresponds to a plasma
with a collisional regime satisfying λe/L ∼ 0.02 ≪ 1.
The cross sectional blob size is set to the characteristic
size δ = δ∗ ≡ ρs(gL

2/(4c2sρs))
1/5 as in Refs. 1 and 4.

The results from electromagnetic and electrostatic cal-
culations for the sheath boundary condition using the
high-β parameters with blob size δ/δ∗ = 1 are shown in
Fig. 1. The 2D density contours are obtained by taking
average along the field line. Notice that the averaged den-
sity contours from the electromagnetic simulation (top)
develop “mushroom” shape and propagate in radial di-
rection with faster speed while electrostatic simulation
(bottom) shows virtually no “mushrooming”.

The reason for this discrepancy is that the parallel cur-
rent development mechanism is different in the two cal-
culations. Due to immediate formation of the Ohmic
current along the magnetic field lines, the electrostatic
calculation causes polarized charges to be quickly flow
to sheath boundary. But in electromagnetic case, par-
allel current propagates toward the sheath with Alfvén
speed. As a result, for the case where Alfv’en time,
τA = L/vA, is larger than characteristic blob propaga-
tion time, τb = δ/Vb, electromagnetic simulations give
higher polarization potential (see Fig. 2) and, conse-
quently, higer speed, which finally causing “mushroom-
ing”. We also note that the slow development of parallel
current may lead to the bending of filament. Further ex-
planation on this electromagnetic bowing of filamentary
structure will be given in following subsection.

Estimating τb for structurally stable blob size1, δ = δ∗,
we find τA/τb = β1/2(L4/ρ2s/R

2)1/5. For the parameters
we used for our simulations τA/τb ∼ 4.

B. Electromagnetic effects and inhomogeneous

polarization

In previous sub-Section we consider the case of homo-
geneous initial blob density along the magnetic field lines
and constant g. However, in practice both blob plasma
density and g can vary along the magnetic field lines (e.g.
recall that g has different sign on outer and inner torus
sides in a tokamak). This will cause non-homogeneous
polarization of blob resulting in variation of velocities
of different parts of blob and blobs shape bending along
the magnetic field lines. We also notice that non-uniform
blob plasma density distribution along the field line can
cause blob spinning4.

We performed three dimensional numerical simulations
of high-β seeded blobs in a varying curvature for the elec-
tromagnetic and the electrostatic calculations. For the
demonstration of filament bending, we consider a simple
curvature variation in a form κx ∼ − sin2(πz/(2L))/R
in the Cartesian computational frame. Under this condi-
tion, the value of the curvature has zero (neutral) at the
end points and the maximum (unfavorable) at the mid-
point of the filament. The free boundary conditions were
used in the z-direction. The Neumann and the periodic
boundary conditions were applied for x and y-direction
respectively. A cylindrical blob with cross sectional size
with δ ∼ 0.5 cm is seeded at t = 0. And other blob
parameters are same as those of the sheath limited blob
simulation.

The sequence of normalized blob density from the elec-
tromagnetic and the electrostatic simulation is shown in
Fig. 3. The comparison between electromagnetic and
electrostatic simulation demonstrates how the filamen-
tary structure is bent by electromagnetic effects. The
electromagnetic simulation shows a non-uniform motion
along the filament: a strong radial movement in the most
unfavorable curvature location and a rather delayed ra-
dial motion near the neutral curvature region. Meanwhile
for electrostatics, the radial motion shows uniform dis-
tribution along the filament despite the inhomogeneous
curvature field.

The reason for such discrepancy between the elec-
tromagnetic and electrostatic simulation is large ratio
τA/τb ∼ 4, which slows down parallel current propagation
which could equilibrate potential along the magnetic field
lines. In Fig. 4 one can see the evolution of maximum
potential difference distribution along the field line for
the two simulations. The non-uniform potential distri-
bution in the electromagnetic filament slowly becoming
uniform, while the electrostatic calculation is macroscop-
ically uniform from the beginning. It is also interesting to
see that the electromagnetic simulation did not produce
instability at the time when the electrostatic approxima-
tion showed the resistive drift wave instability sometime
around t ∼ 5 µs. More details on this microscopic effects
will be discussed in Sec. IV.

The maximum difference of convection speed can be es-
timated by normalization of the vorticity equation with
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FIG. 1. Comparison of the sheath limited high-β blob evolution from electromagnetic (top) and electrostatic calculation
(bottom) for balanced size blob (δ/δ∗ = 1). The 2D contours are the averaged value along the field line.

0 2 4 6
0

1

2

3

4

t [µs]

∆
φ

 [
a
.u

.]

 

 

EM

ES

FIG. 2. Comparison of the dipole potential strength in the
sheath limited high-β blobs for electromagnetic (red) and elec-
trostatic calculation (green).

Alfvén time. From the vorticity equation, Eq. (1), the
maximum difference of E × B velocity between center
and boundary region of Alfvén wave emitting blob is es-
timated as

∆vx(t) ≃ β1/2 L

R
csG(κ, n)

t

τA
+ F (J‖(t)), (8)

where G(κ, n) = 1 − κz=Lnz=L/(κz=L/2nz=L/2) is a ge-
ometrical weighting factor with order of ∼ 1 considering
the ratio of the most unfavorable (z = L/2) and most
favorable (z = L) curvature and the ratio of inhomoge-
neous filament density along the field line. F is a func-
tion of parallel current that makes the velocity difference
become small after t ∼ τA. Integrating the velocity dif-

ference, we get an expression for the filament bending

∆xbending .

∫ τA

0

∆vx(t)dt ∼
1

16
β
L2

R
G(κ, n). (9)

Similar scaling of line bending for high plasma pressure
filament was also obtained in Ref. 5.

The Alfvén wave emitting electromagnetic filament
will also involve the bending of magnetic field as well
as the bending of plasma filament. The inhomogeneous
three dimensional blob simulation cause the development
of current dipole for the both electromagnetic and elec-
trostatic simulations. (See Fig. 5). Note that this kind of
current dipole is also formed in the filaments with sheath
boundary condition. The magnetic field line bending
caused by the current dipole is estimated as

∆xmag ∼

∫ L/2

0

∣
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∣

∣

Bx

B

∣

∣

∣

∣

dz .
1

16
β
L2

R
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The field line bending Eq. (10) follows same form as
the plasma bending Eq. (9). This suggests that the mag-
netic field lines will be “frozen-in” to the high-β filament.
Fig. 6 shows the “frozen-in” field lines with density con-
tour slices in time. In the electromagnetic calculation
(top row of Fig. 6), the magnetic field line (red curve
online) threading the center of blob shows synchronized
motion with peak density at t = 2 µs. In the electrostatic
simulation, however, the magnetic field lines are recom-
posed from the Ohmic current and they do not show the
frozen-in motion.
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FIG. 3. Evolution of density (n/n0) for the high-β filament in the varying curvature along the field line from electromagnetic
(top) and electrostatic (bottom) calculations.
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FIG. 4. Comparison of the dipole potential evolution for (a)
electromagnetic and (b) electrostatic calculation on high-β fil-
ament submerged in the inhomogeneous curvature field. The
maximum value of potential difference is calculated over the
drift (x,y) plane in location z at time t.

IV. ELECTROMAGNETIC EFFECTS ON BLOB

STABILITY

So far we discussed on the macroscopic effects on blob
dynamics. However, as we have seen in Figs. 3-6, there
are also different behaviors in the microscopic activities
between electrostatic and electromagnetic calculations.

The resistive drift wave instability (RDWI) from the elec-
trostatic approximation is modified by the electromag-
netic and electron inertia perturbations. When the resis-
tive effect becomes small due to increased electron tem-
perature, the electrostatic approximation is not enough
to describe the system and the wave instability should be
described by electromagnetic terms. In the high temper-
ature plasmas, the wave instability can be either mod-
ified by electromagnetic drift-Alfvén wave with reduced
growth rate or enhanced by the electron inertia instabil-
ity.
To evaluate the onset of plasma turbulence of fila-

mentary structures, we perform a local linear stability
analysis. We consider exponentially decaying density
∂ lnn/(∂x) = −1/δ. This decaying density profile can
represent the seeded blob with Gaussian density profile
at the local point half radius away (|x− x0| ∼ δ/2) from
the center of blob. The normal mode perturbation of
density, electric potential and parallel vector potential
are assumed to have the form exp(ik ·r− iωt), where k is
wave number vector. Carrying out an analysis similar to
that of Ref. 4, we get the following dispersion equation

ω2 + ω2
g − ω

gχ

cs
= −iωEM

‖

(

ω −
ω∗

1 + χ2

)

, (11)

where

ωEM
‖ = iω2

A

(1 + χ2)
(

ω − ω∗ + ω
k2
⊥c2

ω2
pe

+ i
k2
⊥c2

4πσ‖

) , (12)

and ωg =
√

g/δ is flute mode growth rate, ω∗ = kycsρs/δ
is a drift frequency, ωA = kzvA is the Alfvén frequency
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FIG. 5. Evolution of parallel current (j‖) for the high-β filament in the varying curvature along the field line from electromagnetic
(top) and electrostatic (bottom) calculations .

FIG. 6. Magnetic field line bending for the high-β filament in the varying curvature along the field line from electromagnetic
calculation (top). For the electrostatic calculation (bottom), the magnetic field are calculated by inversion of electrostatic
current. Blue and red lines are the total magnetic field line. The red curve represents the magnetic field line with initial
location of filament.

and χ = kyρs is a normalized perpendicular wave number
with kxρs ≪ 1 approximation.

When ω2
g ≫ ω2

A is satisfied, the wave instability is dom-
inated by flute mode, ω ∼ iωg. This radial motion driven

by the gravitational (curvature) force will significantly
modify the initial approximation of the local density pro-
file, n ∼ exp(−x/δ). Therefore, we simplify the disper-
sion relation neglecting gravity (curvature) effects by con-
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sidering high parallel wave number case kz ≫ ωg/vA.
Within a drift frequency ordering, it is useful to nor-

malize the previous dispersion relation with a frequency
scale free from wave number. If we consider a normalizing
parameter ω̂∗ ≡ cs/δ = ω∗/χ, we get the representation
of perpendicular and parallel wave number by χ and ωA

respectively. Then, the normalized dispersion relation is

Ω2

[

Ω− χ+
Ωχ2

β̃
+ iΩRχ

2

]

= Ω2
A

[

Ω(1 + χ2)− χ
]

,

(13)

where Ω ≡ ω/ω̂∗ is a normalized wave frequency, ΩR =
c2/(4πσ‖ρ

2
s ω̂∗) is a normalized collision frequency and

ΩA = ωA/ω̂∗ is a normalized Alfvén frequency.
In the LHS bracket of Eq. (13), the first two terms

correspond to the electromagnetic responses; the first
term originated from the time derivative of parallel vec-
tor potential, ∂A‖/(∂t) and the second term correlate

with the field line bending term, ∇A‖/B0 × b̂0 · ∇ lnn.
On the other hand the third and fourth term correspond
to two kinds of dissipation terms; the electron inertia
term, β̃−1χ2Ω, describes the “unfrozenness” of magnetic
field on a scale length of the order of collisionless skin
depth and the fourth term, iΩRχ

2, explains the plasma
resistivity.
Initially we begin the stability analysis of Eq. (13)

by considering electrostatic limit as a reference. If the
resistivity term, iΩRχ

2, dominates other electromagnetic
and electron inertial terms in the drift wave frequency
range, such that ΩR ∼ δ · B2/T 3

e ≫ 1 + β̃−1 is satisfied,
then we get the following electrostatic dispersion relation
similar to the equation found in Ref. 4,

Ω2ΩRχ
2 + iΩ2

A

[

Ω(1 + χ2)− χ
]

= 0. (14)

In this case, this wave dispersion relation describes drift
wave as Ω2(Ω2

A → ∞) = (χ/(1 + χ2))2. The growth rate
of the resistive drift wave is found to be

γ

ω̂∗
=







√

ξ4

4
+

(

χ

1 + χ2

)2

ξ2 +
ξ2

2







1/2

− ξ, (15)

where ξ = (1 + χ2)Ω2
A/(2χ

2ΩR). The growth rate shows

asymptotic behaviours such γ/ω̂∗(ξ → 0) =
√

ξ/2 and
γ/ω̂∗(ξ → ∞) = 1/(8ξ). The maximum growth rate of
the electrostatic resistive drift wave instability is found
to be γmax/ω̂∗ ∼ 0.15 without a dependency on ΩR for
ξ ≃ 0.24 with χ = 1.
We next consider following an ideal electromag-

netic dispersion equation by neglecting dissipation terms
(Ωχ2β̃−1 + iΩRχ

2) from Eq. (13). This condition can

be achieved from high beta (β̃−1 → 0) and high tem-
perature (ΩR → 0) plasma. For χ ∼ 1, Ω2

A ≫ 1 limit,
we get a drift wave with frequency, Ω = χ/(1 + χ2) ≤
1 ≪ ΩA, and outward emitting dispersive Alfvén waves,
Ω2 = Ω2

A(1 + χ2). For Ω2
A ≪ 1, we get a drift wave

log
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FIG. 7. Normalized growth rate γ/ω̂∗ as function of ΩA and
χ for two different models: electromagnetic (EM) and electro-
static (ES) calculation. Note that the EM growth rate repre-
sents drift-Alfvén wave and is multiplied by 3.73 for clarity.
The parameters ΩR and β̃−1 correspond to a high beta plasma
with Te = 200 eV, n0 = 1× 1014 cm−3.

(Ω = χ) and two Alfvén waves (Ω2 = Ω2
A). The disper-

sion equation has three distinctive real roots for χ > 1,
ΩA > 0. Therefore, all three waves are stable in the
ideal electromagnetic case. However, a small resistive
correction (ΩR < 1) can make the drift wave unstable.
Neglecting the electron inertia term, we find that: for
Ω2

A ≫ 1, the growth rate of the resistive drift wave is
estimated as γ/ω̂∗(χ ∼ 1) ∼ ΩRχ

4/(Ω2
A(1 + χ2)3) and

γ/ω̂∗(χ ≫ 1) ∼ ΩR/(ΩAχ)
2; for Ω2

A ≪ 1, the growth
rate is approximately γ/ω̂∗(χ ≫ 1) ∼ (Ω2

AχΩR/(1 +

Ω2
Rχ

2))1/2. Thusly in contrast to the electrostatic case
where γmax/ω̂∗ ∼ O(1) and is independent of ΩR, the
electromagnetic case exhibits a strong reduction in the
growth rate: γmax/ω̂∗ ≤ ΩR ≪ 1.
Figure 7 shows the contour lines of normalized growth

rate of drift wave instability from numerical calculation
of the electromagnetic equation (13) and the electro-
static dispersion equation (14) for plasma parameters
with Te = 200 eV and n0 = 1 × 1014 cm−3. The max-
imum normalized growth rate of this drift-Alfvén wave
is about 3.73 times smaller than that of the electrostatic
resistive drift wave instability with maximum value 0.15.
The value of the contour lines from the electromagnetic
calculations are multiplied by a factor 3.73 for better vis-
ibility. This reduction of instability is also observed in
fluid simulations using BOUT++ (See Figure 8).
The interaction between the magnetic field lines and

the high-β plasma plays a role in the suppression of drift
wave turbulence. When the density of filaments have
sufficiently high value of β, the filament carries “frozen-
in” magnetic field lines. When the resistive drift waves
grow, the perturbed parallel currents due to the drift
waves will induce perpendicular magnetic fields result-
ing in net helical field lines in low-β plasma. Unlike the
electrostatic case, however, the perturbed magnetic field
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FIG. 8. Blob density contours of high-beta plasma from EM
(top) and ES (bottom) models. The electrostatic model shows
resistive drift wave. The effective gravity force is suppressed
for simplicity

should move with plasma elements in electromagnetic
high-β case. Because the free energy of instability should
modify the whole system including magnetic fields and
plasmas, the electromagnetic effects makes the instability
to grow much slower than the electrostatic case. More-
over distorting motions of plasma element will cause local
bending magnetic field and this bent magnetic field exert
restoring force on the plasma perturbation.
Comparing the contour lines in Fig. 7 obtained with

the electromagnetic and electrostatic models, we can see
that the most unstable normalized perpendicular and
parallel wave numbers are higher in the case of elec-
tromagnetic model. The dependencies of most unstable
parallel wave numbers, which correspond to maximum
growth rates, and resistivity are found to be (ΩA)γmax

∼

max[ΩR, β̃
−1]1/2. For β̃−1 > 1, the most unstable per-

pendicular wave number is (χ)γmax
∼ 1, and for the con-

ditions β̃−1 < 1 and ΩR < 1, the empirical relation is

found to be (χ)γmax
∼ Ω

−1/2
R .

We note that in our analysis we assume zero ion tem-
perature. In practice, ion temperature in edge plasma
is often larger than electron one. Therefore, finite Lar-
mor radius effect can become important for β̃−1 < 1 and
ΩR < 1 where perpendicular wave length of the most
unstable mode is relatively small.
Meanwhile, the electron inertial term can also make

the dispersion relation have imaginary roots. The con-
dition which increases the electron inertial effect will be
achieved with high Te but relatively low-β so that both
ΩRχ

2 < Ω and β̃−1χ2 ≫ 1 conditions are satisfied. In
this case, the maximum growth rate of electron inertial
instability is found to be γ/ω̂∗ ∼ 0.3 at Ω2

Aβ̃ ∼ 0.5 with

FIG. 9. Contour lines of normalized maximum growth rate as
function of resistivity and β̃−1 and a line (dotted) k‖λe = 1
with respect to ΩA(γmax)

FIG. 10. Contour lines of normalized real frequency of the
corresponding maximum growth rate (Fig.9) as function of

resistivity and β̃−1.

χ ∼ 1.

Figure 9 shows the normalized maximum growth rate
as a function of resistivity and plasma beta. The fig-
ure reveals three distinct instability regimes: Electro-
magnetic drift-Alfvénic suppression regime, electron in-
ertial instability regime and electrostatic resistive drift
wave instability regime. For high temperature (ΩR ≪ 1)

and high pressure (β̃ ≫ 1) regime, electromagnetic ef-
fects reduce the growth rate of the resistive drift wave
instability. However, the electron inertial dissipation in-
creases the growth rate of the electron inertial instability
for relatively low pressure regime (log10 β̃

−1 > 0). In the
high temperature regime, the density determines whether
the drift wave instability become suppressed or the elec-
tron inertial instability becomes unstable. For the elec-
tromagnetic regime Te > (B2δ)(1/3), the electron inertial
instability becomes important if the density is lower than
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FIG. 11. Maximum normalized growth rate γ/ω̂∗ as a func-
tion of resistivity parameter ΩR for electromagnetic blobs of
four different values of β̃−1 = 0.1, 1.0, 10, 100 and electrostatic
blob with electron inertia neglected (blue solid line).

certain value,

n < ncrit[cm
−3] ≡ 6.75× 1014

B[T]2

Te[eV]
. (16)

When electron temperature decreases, we get the electro-
static resistive drift instability regime with the dominate
resistive term.
We note that a range of plasma parameters, from the

typical SOL plasmas (T ∼ 100 eV, n ∼ 3 × 1013 cm−3)
for ITER15 to some enhanced parameters with density
(n ∼ 1×1014 cm−3) considering the ELM event, presents
somewhat marginal regime between the two electromag-
netic regimes. This suggests that turbulence produced
blobs within the relatively less dense background plas-
mas are likely to have electron inertial instability while
high-density plasmas from the ELM crash or from pel-
let ablation will be less unstable. However, when the
plasma is resistive, ΩR ≫ 1 + β̃−1, both electromagnetic
suppression and the electron inertial instability effects
become negligible electrostatic and the system becomes
electrostatic. See Fig. 11.
There are some limitations on the applicability of the

fluid approximation on electromagnetic regimes. First
of all, the mean free path along the field line should be
shorter than parallel wave length of the most unstable
wave to make the fluid equation is valid (See Fig. 9). In
terms of stability analysis, this collisionality condition,
k‖,γmax

λe < 1, sets more severe restriction to the valid-
ity of fluid approximation λe/L ≪ 1. For example, if

we use the relation k‖,γmax
λe = β̃−1/2(ΩA)γmax

/ΩR < 1

with (ΩA)γmax
∼ max[ΩR, β̃

−1]1/2, then the required
density for fluid approximation is n[cm−3] > 3 ×
1010Te[eV]

2/δ[cm]. This relation has second order depen-

dency in electron temperature. Considering high temper-
ature (Te > 100 eV), the validity of fluid approximation
in the stability analysis is questionable for typical densi-
ties in the SOL region.
Moreover, the collisionality condition regarding the ra-

tio of the collision frequency to the wave frequency for the
maximum growth rate (ν/ωγmax

≫ 1) is also required for
the validity of fluid approximation. Because the wave
frequency for the maximum growth rate is comparable
to the drift frequency, ωγmax

. ω̂∗, the collisionality con-
dition becomes approximately ν/ω̂∗ > 1. This condition
also results in similar density requirement as k‖λe < 1
condition for the fluid approximation. Consequently we
remark that the kinetic approach is needed for more re-
alistic analysis on the dynamics of SOL region and the
kinetic effects may modify the stability of plasma away
from the estimation made by fluid approximation.
It should be noted that the kinetic effects, resulting

in Landau damping, are missing in our fluid approxima-
tion. Meanwhile, for the case where drift wave instabil-
ity is related to the effects of electron inertia the ratio
of the parallel wave phase speed of the most unstable
mode to the electron thermal speed is (vph/vTe)γmax =
(Ω)γmax/(ΩA)γmax, where the normalized frequencies

(Ω)γmax ∼ 0.44 and (ΩA)γmax ∼ 0.71(β̃−1)1/2 . For the

case of β̃ ≪ 1, where the electron inertial effects domi-
nate, the Landau damping effect is minimized. However,
for the marginal plasma pressure β̃ ∼ 1, the waves with
comparable magnitudes of wave phase velocity and elec-
tron thermal speed are susceptible to the Landau damp-
ing.

V. DISCUSSION

We have demonstrated that there are two different
types of electromagnetic effects on the high-β blob dy-
namics: one is the macroscopic field line bending and
the other is the modification of microscopic instability.
High-β filament with inhomogeneity along the field line
(non-uniform curvature and density intensity or sheath
boundary condition) makes such bowing of plasma fila-
ment and magnetic field lines. The implications of the
bending of large pressure plasma is also represented in
Ref. 5. As stressed in Ref. 5 the bending motion of
such high-β filament can enhance heat exchange between
the plasma facing materials and the inner region of SOL
forming parallel heat conduction channel.
The coherency of the filament with high temperature

depends on the plasma density. According to Sec. IV,
the ITER’s plasma will be situated in the electromag-
netic regime (See Fig. 9) with reduced resistivity and its
stability is determined by the drift-Alfvén wave or the
electron inertial instability according to the density re-
lation Eq. (16). However, in Sec. IV we neglected the
effective gravity force to focus on the electromagnetic ef-
fect on the wave instability. This assumption is only valid
when the growth rate of instability for blob dissipation
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FIG. 12. Stochastic magnetic field lines are calculated during
the electron inertial instability with slightly reduced β̃. The
electron temperature and density are Te = 200 eV and n0 =
3× 1013 cm−3 respectively.

is larger than a critical time rate of the blob shape de-
formation due to the macroscopic effective gravitational
force, i.e. γ · τm > 1. The critical blob macroscopic de-
formation time16 is τm ∼ (ñbδ/(n0g))

1/2 for the case of
no sheath dissipation effects. Then the condition for the
negligible macro-dynamics is

γ

ω̂∗
>

√

n0

ñb

2δ

R
. (17)

Unless the resistive drift wave instability is reduced by
large density such as filaments density created by pel-
let ablation, the condition (Eq. (17)) is usually satisfied
for most filamentary structures envisioned for edge plas-
mas. For the high-β blobs with reduced growth rate,
however, the blobs will experience fast macroscopic de-
formation due to non-uniformities of blob density and
effective gravity rather than the microscopic dissipation.
The high-β filaments with reduced growth rate can be-

come more unstable by entering either the electron in-
ertia regime or the electrostatic regime. The blob can
move to the electron inertia regime as the blob pressure
is declined by macroscopic deformation, and to the elec-
trostatic regime as the temperature is decreased by heat
conduction or by other energy loss processes such as in-
elastic electron collisions with neutrals/impurities in far
SOL. As the filament transits to the unstable regimes,
cross-field heat conduction will be enhanced by stochas-
tic fields due to the instabilities. See Fig. 12 for an
example of such stochastic field lines.
Although our model was able to show some electro-

magnetic effects on the high-β filamentary structures,
there are still some features remained to be added to
describe ELM filaments. In particular, large amplitude
filament simulation will require nonlinear solver without
using the Boussinesq approximation. The fully nonlinear
simulation with the large blob/ambient plasma density
ratio will produce Alfvén wave slowly propagating inside

the filament surrounded by stiff magnetic fields due to
dilute background density. Finally, we want to mention
that the consideration of increased plasma temperature
will require kinetic approach rather than fluid approxi-
mation.

VI. CONCLUSION

Electromagnetic blob-filaments properties were stud-
ied for high-β plasmas conditions relevant to ITER pa-
rameters. Governing equations based on the vorticity,
density and parallel component of vector potential equa-
tion are considered under assumptions of isothermal elec-
tron, cold ion temperature and also Boussinesq approx-
imation with moderate blob-ambient plasma density ra-
tio. Using BOUT++ simulation, we demonstrated the
boundary effects on the part of the blob away from the
boundary are minimized by the extended Alfvén time
scale in high-β filaments. We also showed that high pres-
sure plasma filament can exhibit macroscopic bending
along with magnetic field lines because of delayed prop-
agation of polarized potential.
The stability characteristics of plasma filaments with

high electron temperature are modified by electromag-
netic effects. The linear stability analysis shows that only
a small growth rate proportional to resistivity remains
for high beta regime. For relatively low beta regime, the
electron inertial instability dominate for the high tem-
perature blobs. However, these electromagnetic regime
returns to electrostatic regime as plasma temperature de-
creases.
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