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1. Introduction

The construction of a theory of quantum gravity is an outstanding theoretical problem. The
gauge-gravity duality conjecture is the notion that gravity is exactly equivalent to a gauge theory.
If true, it would provide a path by which to define quantum gravity nonperturbatively—in contrast
to string theory, which we currently only know how to define perturbatively.

The duality is a correspondence between strong and weak couplings—strongly coupled grav-
ity corresponds to weakly coupled gauge theory and vice versa—and thus, if true, provides a useful
tool by which we can further our knowledge of nonperturbative regimes via perturbative calcula-
tions on the other side of the duality. Probably the most famous example is the KSS result, which
gives a nontrivial result for η/s in a strongly-coupled conformal theory by an easy gravity calcu-
lation. One can also derive the Bekenstein-Hawking entropy by state counting on gauge-theory
side.

However, the duality is currently still a conjecture, albeit well-motivated and well-supported.
It is therefore useful to test the correspondence by computing related nontrivial quantities on both
sides of the duality and comparing. One may find a mismatch, which would serve as a counterex-
ample and falsify the conjecture. Performing such a test is not trivial, because it is typically beyond
our ability to compute quantities on both sides of the duality, as strong coupling is a hindrance to
analytic results.

However, lattice methods can give us access to nonperturbative physics on the gauge-theory
side. At strong coupling, the gravity theory will be analytically tractable, and we can have reliable
independent results that can be compared. Thus, lattice techniques provide a route for testing the
duality.

The standard lore is that weakly-coupled semiclassical (super)gravity corresponds to the large-
N strong-coupling limit of the gauge theory. Moving away from the strong-coupling limit intro-
duces classical stringy corrections on the gravity side, and moving away from large-N corresponds
to quantum string effects. We can control N, the rank of the gauge group, and the coupling in our
lattice calculations and gain access to these corrections.

There are a variety of approaches to studying this duality. A good setting is N =1 super-Yang–
Mills (SYM) in 10D, which should be dual to 11D supergravity (SUGRA) [4]. Dimensionally
reducing this theory yields N =4 SYM in 4D, but one can further reduce to 0 spatial dimensions
to get the maximally-symmetric D0-brane quantum mechanics, or the BFSS Matrix Model. We
study the BFSS model nonperturbatively with the hope of comparing with known results from 11D
SUGRA. BFSS conjecture that this model is a nonperturbative definition of M-theory [5].

In particular, string theory makes definite predictions for the internal energy of a black hole as
a function of temperature.

E
N2 =

E0(T )
N0 +

E1(T )
N2 +O

(
1

N4

)
(1.1)

E0(T ) = a0T 2.8 +a1T 4.6 +a2T 5.8 + · · · (1.2)

E1(T ) = b0T 0.4 +b1T 2.2 + · · · (1.3)

where T is the dimensionless temperature λ−1/3T where λ = g2
Y MN is the dimensionful ’t Hooft

coupling. SUGRA yields an exact value for a0 which numerically is 7.41. Matching to effective
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field theory also gives a value for b0, −5.77.
We can try to verify these values, as well as the powers of the dimensionless temperature.

Our results reproduce a0 with good precision, b0 with large errors, and coefficients subleading
in T which are unknown on the gravity side. We can also try to reproduce the exponent of the
subleading-in-T terms—that is, 4.6 and 5.8 for E0, which we can do with some success, though
mild assumptions from the gravity side are needed. The extraction of the power leading power of
E0, 2.8, from the gauge-theory side remains an outstanding challenge for the future.

2. D0 Brane Quantum Mechanics

Maxmially supersymmetric D0-brane quantum mechanics is a 0+1D gauge theory described
by

L =
1

2g2
Y M

Tr
{
(DtXM)2 +[XM,X ′M]2 + iψ̄γ

10Dtψ + ψ̄
α

γ
M[XM,ψ]

}
(2.1)

where M runs from 1 to 9 and α from 1 to 16. The bosonic matrices X and fermionic matrices ψ

are N×N and live in the adjoint so that Dt ·= ∂t ·−i[At , ·].
This theory has an obvious nonperturbative definition—a lattice formulation—and is quantum

mechanical, so that it is unitary by construction. If the duality is correct, then there cannot be
entropy production during black hole formation, nor can there be information loss during black
hole evaporation.

A black hole in this theory is a set of generic, nonperturbative matrices X . The physical picture
is that the eigenvalues of those matrices are the coördinates of the D0 branes, while the off-diagonal
elements correspond to the stringy connections between the D0s[6].

Because the potential term is proportional to [XM,X ′M]2, sets of block-diagonal matrices cor-
respond to decoupled systems. These flat directions persist quantum mechanically, so at large N
this theory appears to be a second quantized theory—one can independently create an arbitrarty
number of distinct systems and then subsequently allow them to interact. So, one can describe, for
example, two black holes by partitioning X into two or one black hole and one D0 of radiation.

If this bunch of interacting D0-branes is really dual to a black hole, it must evaporate. Such
a bunch has been known to be unstable for many years[7]. Recently, it has been shown that its
evaporation has negative specific heat—just like a real black hole [8, 9]. However, from a more
pragmatic point of view, this raises a question: can we reliably study a metastable state via Monte
Carlo calculations? The answer is yes—the physical evaporation timescale and the Monte Carlo
timescale for finding a instability are both derived from phase-space arguments and can be seen to
be exponentially large in N. Thus, we can stabilize the simulation by taking N large enough unless
we are exponentially unlucky.

3. Lattice Calculation

Taking N to be large is crucial for numerical stability, but is also important for performing
the desired test of duality—the supergravity results only strictly hold in the large-N limit (though
the form of the 1/N corrections is known). Finally, to compare our gauge theory calculations
with SUGRA it is crucial to extrapolate our lattice results to the continuum limit, for the duality is
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between the two continuum theories. No previous work handled both of these systematic concerns.
Additionally, previous work [10, 11, 12, 13, 14, 15, 16, 17] was unable to fit the leading coefficient
a0, but instead set it to its known value of 7.41 and fit the subleading behavior. Our calculation
properly controls the large-N and continuum extrapolations, and yields precise enough values to fit
a0.

The details of our discretization are described in detail in Ref. [2]. Numerically, D0-brane
quantum mechanics is quite nice, because it has a dimensionful coupling ’t Hooft coupling λ

and no other dimensionful quantities, so scale setting is quite easy and there are no fine-tunings.
Furthermore, having only 1 spacetime dimension renders the computation relatively cheap.

We run each Monte Carlo ensemble for many thousands of steps, and can perform reliable
estimates of all observables. We found that very large statistics was required for a stable fit—not
due to thermalization, but because there can be long-lived fluctuations that can bias the mean if the
Monte Carlo sample is too small.
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Figure 1: Left: A simultaneous extrapolation in N and L (colored lines and bands, and the black diamond)
for T = 0.5 compared to extrapolation in N (dashed line with dotted band, and the black circle) following
extrapolation in L (black points at finite N). Right: the same simultaneous surface of extrapolation, showing
the quadratic dependence on L−1. Figure taken from Ref. [3].

To reach the continuum large-N result, we tried two approaches. First, we took independent
continuum limits for each N we studied, and subsequently took the large-N extrapolation of those
results. The only pitfall of this procedure is that one must make sure to be in the region of lattice
spacing where O(a2) effects are negligible—the linear extrapolation of coarse lattice spacings can
deceptively appear reliable: going to finer spacings shows a dramatic departure from that sort of fit.
To avoid this potentiall issue we perform a quadratic extrapolation to the continuum. This two-step
extrapolation performs acceptably, but not as well as a simultaneous extrapolation in lattice spacing
and N.

For a given temperature we can adjust N and L (the number of lattice sites, which is like the
inverse of the lattice spacing) independently, and fit simultaneously to

E
N2 = e00 +

e01

L
+

e02

L2 +
e01

N2 (3.1)

which, incorporating both the quadratic lattice spacing effects and the leading large-N correction,
allows us to cleanly fit all of our measured values for E/N2. This procedure reliably produces
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the same central value with smaller error bars. At a given temperature, the resulting values e00

and e01 are the respective values of the functions E0(T ) and E1(T ). So, we can constrain both the
leading-in-N behavior and the first correction.

4. BFSS and SUGRA Agree

With reliable fits determining the continuum values e00 and e01 across a range of temperatures,
we can test to see if the functions E0(T ) and E1(T ) determined from gauge theory match what is
known from the gravity side.

Figure 2: Our values of e00 and fits for different forms of E0(T ). Left: fits of coefficients only. Right: fits
that fix the leading term and determine the subleading coefficents and powers. For comparison we show
results from Refs. [14] and [16]. The solid black line is the SUGRA result.

In Fig. 2 we show our lattice determination of e00 and a variety of fits. We performed two
different kinds of test. First, assuming the known form of E0(T ) we fit the coefficients ai. We
find that over the temperature range of our data care is needed to ensure there is no systematic
tension distorting the coefficients—to incorporate all of our points at least three terms are needed.
But, once this is handled, we get a very good, reliable fit—a0 = 7.4± 0.5, a1 = −9.7± 2.2, and
a2 = 5.6±1.8 with a χ2/DOF= 0.76/3. This fit is shown in blue in the left panel of Fig. 2. That
we recover the correct value of a0 is nontrivial—it could have differed from the SUGRA value of
7.41 and falsified the correspondence. We also find a1 to be compatible with the result from [14].

In the right panel we show a test of a different sort. Instead of assuming the form of E0(T )
is correct, we assume only the leading behavior and try to fit both the coefficients and powers of
the subleading terms, as is done in eg. [16, 14]. Knowing that our data spans a temperature range
where the third term is important means that we should not expect a fit with only one subleading
term to succeed. Indeed, if we fit the form 7.41T 2.8 + a1T p1 + a2T p1+1.2 we find p1 = 4.6± 0.3,
a1 =−10.2±2.4, and a2 = 6.2±2.6 with χ2/DOF= 2.6/3. It is comforting that this determination
of a1 and a2 is nicely compatible with our other determination. It would be preferable to not assume
that the exponent of the third term p2 was p1 +1.2, but without this assumption one finds a best fit
of p1 = p2 6= 4.6. A reliable independent determination would require additional data points at low
temperature where T 4.6 and T 5.8 differed noticeably.

Of course, the ultimate goal is to check that the gauge theory reproduces the SUGRA result
7.41T 2.8 with no assumptions about the gravity side. While we have shown that the gauge theory
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indeed produces a0 ≈ 7.41, this demonstration relied on knowing the power 2.8. A complete
demonstration without this assumption remains an outstanding problem.

We have access to more than just the leading-in-N behavior, however. In fact, we can make a
comparable test at O(N−2), as the low-temperature behavior there is known as well.
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Figure 3: Our values for e01 and two fits, as well as the low-temperature stringy prediction.

We show the results of trying to fit the coefficients only, assuming the polynomial form. We
find b0 = −5.8± 3.0, compatible with the known value of −5.77, and loosely constrain b1 =

−3.4± 5.7. Clearly, additional precision is needed to make a stringent comparison or to make a
prediction for the analytic result on the gravity side. Nevertheless, the agreement between our value
of b0 and the known gravity-side result is encouraging. Constraining subleading-in-N properties
characterizes quantum effects, and provides a path

5. Conclusions and Outlook

By performing a strong-coupling, nonperturbative calculation in the BFSS matrix model of
D0 quantum mechanics, we can try to test the conjectured equivalence of gauge theory and gravity.

At leading order in N, the equivalence passes the test—the continuum gauge theory pro-
duces the same behavior as SUGRA. This conclusion relies on knowledge of the temperature
dependence—removing the final assumption that at low temperature the black hole internal energy
scales like T 2.8 remains an open challenge. Continuum knowledge of corrections in N remains too
imprecise to draw a strong conclusion.

Further questions remain. Can we verify emergent spacetime far from the eigenvalue bunch?
Can we reach the low-temperature limit and see massless Hawking radiation in a near-thermal
spectrum? Does the black hole have a firewall? Exciting horizons lie ahead.
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