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Abstract. X-ray imaging can be used to inspect cargos imported into the United States. In order to better 
understand the performance of X-ray inspection systems, the X-ray characteristics (density, complexity) of 
cargo need to be quantified. In this project, an image complexity measure called integrated power spectral 
density (IPSD) was studied using both DNDO engineered cargos and stream-of-commerce (SOC) cargos. A 
joint distribution of cargo density and complexity was obtained. A support vector machine was used to 
classify the SOC cargos into four categories to estimate the relative fractions.  
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1. Introduction 

 Millions of cargo containers are imported into the United States every year. In order to ensure that 

no radiological and nuclear (Rad/Nuc) threats are hidden in these imports, X-ray technology may be 

used in the inspection process. It is important to assess the performance of existing and emerging X-ray 

technologies applied to cargos with various characteristics. Cargo density and complexity 

(inhomogeneity) have been shown, in previous DNDO studies, to be highly influential on the detection 

performance of X-ray systems. This project aimed to characterize the complexity of imported cargos. 

The complexity distribution can be combined with the density distribution to give an indication of the 

difficulty detecting Rad/Nuc threats in the cargo.  

 Section 2 explores various alternative complexity measures. In particular, integrated power 

spectral density (IPSD) is discussed in more detail since it provides a complexity measure that closely 

matches human-perceived image complexity. In section 3, the application of IPSD to stream-of-

commerce (SOC) cargos to obtain the cargo complexity distribution is discussed.   

 

2. Complexity Measures 

 Three different complexity measures were applied to X-ray images of 18 DNDO engineered 

cargos. The cargos were labelled by humans as high-density, high-complexity (HH), high-density, low-

complexity (HL), low-density, high-complexity (LH), or low-density, low-complexity (LL). The goal 

was to find a measure that closely matched human-perceived complexity classifications. 

 In addition to IPSD, Law’s texture measure [2] and edge density were considered. Law’s texture 

measures give a nine-dimensional vector that contains combinations of measurements of levels, edges, 

spots, and ripples. Additional analysis would be needed to combine elements of this vector into a single 

complexity metric. The edge density was by Canny’s edge-counting algorithm [1]. The process of 

obtaining this metric is similar to IPSD for each image. The only difference is that for IPSD, the power 

spectral density was used in the calculation; but for edge density, the pixel values of the edge image 

obtained by Canny’s edge-counting algorithm was used.  

 Among the three measures considered, IPSD is the closest to human response. Figure 1 

demonstrates that IPSD can distinguish between low- and high-complexity DNDO engineered cargos 

similar to human classification. The other two complexity measures did not match very well to human 

responses. Figure 2 shows the first dimension of the Law’s texture measure vs. mean equivalent steel 



 
 

3 LLNL-TR-700977 
 

thickness for the DNDO cargos. It clearly misclassified water as high-complexity cargo. Moreover, it 

also had difficulty separating between LH and HL cargos near complexity 0.01. The method of counting 

edges did not show satisfactory result either, as can be seen in Figure 3, where it failed to distinguish 

between LL and LH cargos. It also misclassifies water as high-complexity.  

 

 

Figure 1. IPSD vs. Mean equivalent thickness. 

 

 

 

 

Figure 2. Law’s 1
st
 texture metric vs. 

Mean equivalent thickness. 

 Figure 3. Edge density vs. Mean 

equivalent thickness.  

 

 In order to minimize the effects of different responses that X-ray scanners may have on the 

performance of the complexity measures, all of the analysis was done on equivalent steel thickness 

images converted from intensity images. Figure 4 shows two examples of DNDO engineered cargos 

with different human perceived complexities. Plastic cargo is labelled as low-complexity due to its 

homogeneity, whereas brake cargo is labelled as high-complexity due to its heterogeneity.   
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Figure 4. Examples of DNDO engineered cargo equivalent steel thickness 

image. 

 

 The IPSD complexity measure is constructed by sliding a 128x128 window across the image. In 

other words, a sub-region of 128x128 is formed at each pixel location. A Hamming window is applied to 

each sub-region to eliminate effects caused by discontinuities at the edges. The next step is to use Fast 

Fourier Transform to transform each sub-region to the spectral domain and obtain a spectral density 

image as shown in Figure 5. As shown in Figure 6, the DNDO cargos have different spatial frequency 

distributions for certain frequency range. Furthermore, high-complexity cargos tend to have more high-

frequency content than low-complexity cargos in the frequency range between 0.2 cm−1 and 0.55 cm−1. 

Extremely high frequencies (>0.8 cm−1) are often the result of very small structures or noise in an 

image, which do not contribute to human perceived image complexity because they are difficult to be 

observed by human eye. On the other hand, extremely low frequencies are from large structures in an 

image, which are easy to recognise by humans, thus they should not be considered into calculating 

complexity. In this particular case with X-ray cargo images, large structures can be formed by the way 

cargos are packaged or positioned in a container; thus are not the properties of the cargo itself. As a 

result, the extremely low and high frequencies should be excluded when calculating the complexity 

measures. A grid search was performed to find lower and upper limits that best separate the high and 

low complexity cargos. The optimal lower (0.2 cm−1) and upper (0.55 cm−1) frequency limits are the 

left and right boundaries of the shaded region in Figure 6. The two-dimensional version can be seen as 

the two red circular rings in Figure 5. The horizontal axis in Figure 6 corresponds to each ring in Figure 

5, and the vertical axis shows the coefficients at each frequency which are shown in Figure 5 as different 

darkness. The IPSD was computed as: 

 

 

Plastic 

Low Complexity 

Brakes 

High Complexity 

𝐼𝑃𝑆𝐷 = ∫ 𝑃𝑆𝐷(𝑓𝑥 , 𝑓𝑦)𝑑𝑓𝑥𝑑𝑓𝑦
𝑓𝑥,𝑓𝑦
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where  

 

and  

 

 

 

 

Figure 5. Spectral density image of a sub-

region from brakes cargo image in Figure 7 

showing annular region used for IPSD 

calculation. The red rings correspond to the 

limits shown in Figure 6. 

 

The fourth step is to sum all the values in an annulus within the spectral density to obtain the IPSD. As 

the sub-region slides across the image, an IPSD value is obtained at each pixel.  Figure 7 shows the 

comparison between the original image and its corresponding IPSD image. It can be seen that the IPSD 

image for brakes cargo has higher complexity than the plastic cargo. 

 
Figure 6. Azimuthally-averaged power spectral 

densities for DNDO cargos. The shaded region shows 

the optimal frequency bound for discriminating high- 

and low- complexity cargos.  

 

0.55 cm−1 
 
 
0.2 cm−1 
 
 

𝐻(𝑓𝑥, 𝑓𝑦  ) =  ∫ 𝑒2𝜋𝑖𝑥𝑓𝑥

x,y

e2𝜋𝑖𝑦𝑓𝑦g(x, y)dxdy 

𝑃𝑆𝐷(𝑓𝑥, 𝑓𝑦) =   |𝐻(𝑓𝑥, 𝑓𝑦)|
2
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Figure 7.  Examples of steel thickness (left) and IPSD (right) images. 

White outline is the boundary of cargos in the container, yellow outline is 

eroded from white outline by 64 pixels. 

 

The next step is to apply the cargo mask to the image to isolate the cargo area, and apply binary erosion 

to shrink the mask so that the cargo edges and gaps between cargos do not contribute to the final 

complexity measure. This procedure is shown in Figure 7, where the yellow boxes indicate the eroded 

cargo mask boundaries. The final complexity measure is defined as 

 

 

 

where the denominator is used as a normalizer.  

 

 

3. Application of IPSD on SOC cargos 

 IPSD was computed for 483 SOC cargo X-ray images from the NRIP Freeport data set to study 

the joint complexity/density distribution. Figure 8 shows a scatter plot of the cargos, where red dots are 

40-foot containers and blue dots are 20-foot containers. Figure 9 shows the contour plot of the joint 

density estimated by kernel density estimation by a Gaussian kernel. It can be seen that few SOC cargos 

are high-density, high-complexity, and many are high-density, low-complexity. Figure 9 also shows that 

the DNDO engineered cargos span the distribution of the SOC cargos, which means that they are good 

representatives of SOC cargo.  

Plastic IPSD Image 

Brakes IPSD Image 

Original Plastic Image 

Original Brake Image 

𝑪𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 ≡
𝟏𝟎𝟎 × 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐰𝐢𝐭𝐡𝐢𝐧 𝐲𝐞𝐥𝐥𝐨𝐰 𝐛𝐨𝐚𝐫𝐝𝐞𝐫 𝒊𝒏 𝑰𝑷𝑺𝑫 𝒊𝒎𝒂𝒈𝒆

𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐰𝐢𝐭𝐡𝐢𝐧 𝐲𝐞𝐥𝐥𝐨𝐰 𝐛𝐨𝐚𝐫𝐝𝐞𝐫 𝐢𝐧𝐞𝐪𝐮𝐢𝐯𝐚𝐥𝐞𝐧𝐭 𝐬𝐭𝐞𝐞𝐥 𝐭𝐡𝐢𝐜𝐤𝐧𝐞𝐬𝐬 𝐢𝐦𝐚𝐠𝐞
                  (2.1) 
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Figure 8. Scatter plot of IPSD vs. Mean equivalent steel thickness for SOC cargos.  

 

 

Figure 9. Kernel Density Estimated Contours for SOC cargos. The 

data points are for DNDO cargos. The blue lines serve as a guide that 

shows the DNDO cargos can be separated well by IPSD and Mean 

equivalent steel thickness. 
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 In order to estimate the fractions of SOC cargos that are HH, HL, LH, and LL, support vector 

machine (SVM) was used for classification. The training data set is the DNDO engineered cargos. The 

SVM SOC cargo class are shown in Figure 10. Among the 483 Freeport SOC cargos, SVM classified 

5.3% as HH, 44% as HL, 27.1% as LH, and 23.6% as LL. Based on the classification by SVM, of the 

high density-high complexity SOC cargos 36.7% are 20-footers, of the high density-low complexity 

cargos 50.4% are 20-footers, of the low density-high complexity cargos 33.3% are 20-footers, and of the 

low density-low complexity cargos 33.1% are 20-footers.  

 

Figure 10. Classification of SOC cargos by Support Vector Machine. 

 

  

 IPSD complexity of SOC cargos was also studied on the basis of tariff codes (HS2). Table 1 

shows the fraction of cargos that are HH, HL, LH, and LL for each HS2. As expected, plastics, wood 

and paper products were mostly low complexity. Iron articles span various complexities and densities. 

Vehicles, electrical equipment, and mechanical equipment are mostly high complexity. Instruments are 

mostly low density, but vary in complexity. The majority of base metal articles and furnishings are also 

low complexity. 
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Table 1 Density/Complexity breakdown for selected cargos based on HS2 codes 

          Plastics 

(39) 

Wood 

(44) 

Paper 

(48) 

Iron 

(73) 

Vehicles 

(87) 

Base 

Metals 

(83) 

Electrical 

Equipment 

(85) 

Mechanical 

Equipment 

(84) 

Instruments  

(90) 

Furnishings 

(94) 

HH 0 0 0 16.7% 7.3% 12.5% 9.3% 3.8% 0 0 

LH 6.8% 0 0 33.3% 82.9% 12.5% 67.4% 67.3% 66.7% 27.3% 

HL 61.4% 100% 72.7% 37.5% 2.4% 50% 16.3% 7.7% 0 18.2% 

LL 31.8% 0 27.3% 12.5% 7.3% 25% 7% 21.2% 33.3% 54.5% 

ALL 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 

 

4. Discussion 

  Three image complexity metrics were applied to DNDO engineered cargos. Integrated power 

spectral density (IPSD) performed the best in terms of matching human-perceived complexity. The joint 

distribution between IPSD and mean equivalent steel thickness for the SOC cargos was estimated by a 

Gaussian kernel density estimation. The SOC cargos were also classified using a support vector machine 

trained on the DNDO cargos. The results show that 5.3% SOC cargos are high-density, high-complexity, 

and 44% are high-density, low-complexity. Of the high-density, low-complexity cargos more than half 

are held in 20-foot containers. The complexity distributions were also analysed for each major tariff 

codes, where the fractions of HH, HL, LH and LL of different kinds of imports were estimated. The 

complexity distributions among different kinds of products were as expected. In this project, only the 

support vector machine was used in the classification because of time constraints. In the future, more 

sophisticated machine learning techniques may be applied, for example, ensemble methods, to achieve 

more accurate classification.  

 

5. Impact of internship on my career 

This internship has been not only a valuable opportunity to learn a new set of skills, but also a 

great experience to collaborate with people with different backgrounds and expertise. The project that I 

have worked on introduced me to the topic of image processing, and it is fascinating to see the 

importance and broad application of this topic in real world situations. As a result, I plan to expand my 

research, when I go back to school, to include topics on image analysis.   
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The DHS lecture series provided interesting talks, which increased my awareness of cutting-edge 

research that is conducted in the national labs. The tours of state-of-the art facilities and many social 

events organized by the lab helped me to see what it was like to work in the lab. The overall positive 

experience of my internship made working at the lab one of the possibilities in my list after graduation.  
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